| 研究生: |
陳奕瀚 Chen, I-Han |
|---|---|
| 論文名稱: |
利用新穎電紡絲技術製備複合奈米碳纖維材料之研究 Fabrication and Characterization of Carbon Nanofibers Composite by the Novel Electrospinning |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 碳纖維 、靜電紡絲 、表面修飾 、聚丙烯腈 、光觸媒 |
| 外文關鍵詞: | Carbon nanofibers, Poly acrylonitrile(PAN), Electrospinning, Superparamagnetic, Titanium dioxide |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳纖維是一具有耐熱性好、質量輕、高強度、低膨脹係數的高性能導電纖維,因此,碳纖維廣泛的被應用到補強材料以及電子產品等各項民生用品上。目前碳纖維製備所用的原料主要可分為纖維素系碳纖維、聚丙烯腈系碳纖維及瀝青系碳纖維等三大類;其中,又以聚丙烯腈系碳纖維為最大宗,因為,以此原料所製備出來之碳纖維的強度最佳且碳化效率也較高。隨著近年來奈米材料的發展,具有更高強度、高比表面積與質輕特性的奈米纖維受到各界的矚目。因此,本研究主要是以新穎電紡絲設備來製備出以聚丙烯腈系(polyacrylonitrile, PAN)為主之複合奈米纖維,其新穎設備內容主要是利用加速內管的離心力配合著電場作用來使得奈米纖維材料獲得相當程度之牽伸,進而得到奈米尺寸等級之複合纖維。利用此新穎技術不但保留了原先電紡絲的優點更能將產量大幅的提升。
本實驗第一部分為導入表面修飾後之CoFe2O4磁性奈米粒子均勻的分散在電紡溶液中,用以製備出具有磁性的複合奈米纖維。經由電子顯微鏡觀察發現紡製出來之奈米纖維其直徑約為80nm,而此磁性複合奈米纖維的磁性隨著後續熱處理溫度的不同,可由45 emu/g增加至63emu/g。另外,電磁波遮蔽試驗證實磁性複合奈米碳纖維的電磁波遮蔽效率可達40dB以上。第二部分則是導入經電漿表面接枝修飾後之奈米碳管(carbon nanotubes, CNTs)於聚丙烯腈電紡溶液當中進行靜電紡絲。藉由控制不同的實驗參數將可獲得不同尺寸之奈米纖維。除此之外,經由穩定化與碳化製程處理後可獲得具導電性之複合奈米碳纖維。由電阻值的量測可以發現奈米碳管的加入有助於使碳纖維於750℃低碳化溫度處理後就能夠獲得高導電度之奈米碳纖維產物。最後,本研究也利用此套新穎電紡設備來製得具光觸媒特性之二氧化鈦奈米纖維。本研究選用聚甲基丙烯酸甲酯來當作黏著劑,並加入有機鈦鹽製備出直徑約為50nm之二氧化鈦奈米纖維。並利用後續高溫燒結製程來獲得具有光催化特性之二氧化鈦奈米纖維。經光催化實驗結果顯示,利用此二氧化鈦奈米纖維來催化偶氮染料時,於50分鐘的處理時間,溶液的去色率即可達到99%以上;在芳香環降解方面,在80分鐘時亦可達到99%的降解率。結果證實此二氧化鈦奈米纖維的確有不錯的光催化特性。
Carbon nanofibers have attracted significant interest in the scientific community. They possess special properties that are important in the preparation of polymer composites, including a high strength and aspect ratio, good thermal and electrical conductivities, and low density. These properties lead the carbon fibers can be applied for industrial use. Usually, the main precursors for the carbon fiber synthesis are cellulose, poly acrylonitrile(PAN) and pitch. Especially, PAN is the large amount of carbon fiber preparation due to the yield, performance and price. In recent years, many methods have been reported to fabricate nanofibers, including supercritical fluid techniques, chemical vapor deposition (CVD) and vapor deposition polymerization (VDP) using anodic aluminum oxide (AAO) as a template. The methods used in the above-mentioned studies cannot fabricate uniformly-sized nanofibers on a large scale, and the synthesis processes are also very complex. In order to solve the vital issues we set up the novel electrospinning process and obtain the nanofibers via the equipment. The process not only retains the advantages of the traditional electrospinning process but also improves the yield of the nanaofibers.
In the first section of this study, an electrospinning process was used to fabricate cobalt ferrite (CoFe2O4)-embedded polyacrylonitrile (PAN) nanofibers. Oleic acid-modified CoFe2O4 nanoparticles were dispersed in the PAN before spinning. The surface morphologies and structures of the nanofibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observation showed that the average diameter of the CoFe2O4/PAN nanofibers was 110 nm, and the magnetic CoFe2O4 nanoparticles were embedded in the PAN nanofibers. X-ray photoelectron spectroscopy was used to characterize the CoFe2O4/PAN and CoFe2O4/carbon nanofibers. Fiber magnetic properties were measured by vibrating sample magnetometry, showing that the saturation magnetization of the CoFe2O4/PAN nanofibers was 45 emu/g and that the fibers demonstrated superparamagnetic behavior.
In the second section of this study, hybrid nanofibers with different concentrations of functionalized carbon nanotubes (CNTs) in polyacrylonitrile (PAN) were fabricated using the electrospinning technique and subsequently carbonized. Acrylonitrile-modified CNTs were dispersed in the PAN before electrospinning. The surface morphologies and structures of the nanofibers were characterized by Raman spectroscopy, and scanning and transmission electron microscopy, which showed that the average diameter of the CNT/PAN nanofibers was 110 nm and that the CNTs were embedded in the nanofibers. Raman results indicate that embedded CNTs in the PAN nanofibers nucleate the growth of carbon crystals during PAN carbonization. The lowest sheet resistance of the carbon nanofiber was 8Ω/sq, and the electromagnetic interference shielding efficiency was about 40 dB. Finally, high performance titanium dioxide (TiO2) nanofibers sheet were fabricated via one-step electrospinning technique for azo-dye decomposition. Scanning electron microscopy and transmission electron microscopy showed that the TiO2 nanofibers are smoothly and the mean diameter of the prepared nanofibers are 50nm. X-ray diffraction (XRD) patterns present that the crystal phase of the TiO2 is anatase.
[1] W. Zheng, S.C. Wong and H.J. Sue. Polymer 43 (2002) 767-6773.
[2] X.M. Chen, J.W. Shen, W.Y. Huang. J. Mater. Sci. Lett. 21 (2002) 213-214.
[3] Y.X. Pan, Z.Z. Yu, Y.Z. Ou, G.H. Hu, J. Polym. Sci. Part B Polym. Phys. 38 (2000) 1626-1633.
[4] G.H. Chen, D.J. Wu, W.G. Weng, B. He, W.L. Yan, Polym. Int. 50 (2001) 980-985.
[5] J.Y. Cao, L.S. Chen. Polym. Compos. 26 (2005) 713-716.
[6] M. Sakai, R. Matsuyama, T. Miyajima. Carbon 38 (2000) 2123-2131.
[7] G. Wei, K. Shirai, K. Fujiki, H. Saitoh,.T. Yamauchi, N. Tsubokawa. Carbon 42 (2004) 1923-1929.
[8] M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M.S. Dresselhaus. Carbon 39 (2001) 1287-1297
[10] T. Koyama, M. Endo. Jpn. J. Appl. Phys. 3 (1974) 1175-1176.
[11] T. Koyama , M. Endo, Jpn. J. Appl. Phys. 13 (1974) 1933-1939.
[12] A. Oberlin, M. Endo, J. Cryst. Growth. 32 (1976) 335-349.
[13] J.S. Speck, M. Endo, M.S. Dresselhaus. J. Cryst. Growth. 94 (1989) 834-848.
[14] G.G. Tibbetts. Appl. Phys. Lett. 42 (1983) 666-668.
[15] F. Benissad, P. Gadelle, M. Coulon, L. Bonnetain. Carbon 26 (1988), 61-69.
[16] G.G. Tibbetts, D.W. Gorkiewicz, R.L. Alig. Carbon 31 (1993) 809-815.
[17] M. Ishioka, T. Okada, K. Matsubara. Carbon 30 (1992). 865-868.
[18] S. Wang, Z.H. Chen, W.J. Ma, Q.S. Ma. Ceram. Int. 32 (2006) 291-295.
[19] J.C. Chen, I.R. Harrison. Carbon 40 (2002) 25-45
[20] I. Martin-Gullon, R. Andrewsb, M. Jagtoyenb, F. Derbyshire. Fuel 80 (2001) 969-977.
[21] E. Fitzer. Carbon 27 (1989) 621-645.
[22] K. Christ, K.J. Huttinger. Carbon 31(1993)731-750.
[23] V. Liedtice, K. J. Hottinger. Carbon 34 (1996) 1067-1079.
[24] J. Gerard Lavin. Carbon 30 (1992) 351-357.
[25] Q.L. Wu, D. Pan. J. Appl. Polym. Sci. 90 (2003) 754-758.
[26] Y. C. Chiang, C.Y. Lee, H.C. Lee. Mater. Chem. Phys. 101 (2007) 199-210.
[27] F. L. Zeng , D. Pan. Cellulose 15 (2008) 91-99.
[28] P. Delhaes, Graphite and precursors. Gordon and Breach, 2001
[29] http://www.substech.com/dokuwiki/doku.php?id=graphite
[30] R.H. Tellingy, M.I. Heggie. Philos. Mag. Lett. 83 (2003) 411-421
[31] M. Vittori Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvani, L. Pilloni. Scr. Mater. 55 (2006) 1047-1050.
[32] J. P. Rabe, s. Buchholz. Phys. Rev. Lett. 66 (1991) 2096-2099.
[33] W. Lin, R.W. Zhang, C.P. Wong. J. Electron. Mater. 39 (2010) 268-272
[34] F.C. Marques, R.G. Lacerda, A. Champi, V. Stolojan, D.C. Cox, S.R.P. Silva. Appl. Phys. Lett. 83 (2003) 3099-3101
[35] T.A. Edison. U.S. Patent 223 898 (1879)
[36] T.A. Edison. U.K. Patent 4576 (1879)
[37] 進藤昭男:大阪工業技術試験所報告 317 (1961) 1-52.
[38] H. Ono, A. Oya. Carbon 44 (2006) 682-686
[39] E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano, A. Oya. Carbon 40 (2002) 617-636.
[40] S. Iijima. Nature 354 (1991) 56-58.
[41] S. Iijima, T. Ichihashi. Nature 363 (1993) 603-605.
[42] C.A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P. C. Eklund. Chem. Phys. Lett. 319 (2000) 460-464.
[43] B.S. Files, B.M. Mayeaux. Adv. Mater. Process 156 (1999) 47.
[44] H. Dai, Surf. Sci. 500 (2002) 218-241.
[45] D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, R. S. Ruoff. Appl. Mech. Rev. 55 (2002) 495-533.
[46] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matushita, K. Miyashita, M. S. Dresselhaus. Carbon 39 (2001) 1287-1287.
[47] P. Arias, N. F. Ferreyra, G. A. Rivas, S. Bollo. J. Electroanal. Chem. 634 (2009) 123-126.
[48] S. Timur, U. Anik, D. Odaci , L. Gorton. Electrochem. Commun. 9 (2007) 1810-1815.
[49] W. Knapp, D. Schleußner. Appl. Surf. Sci. 251 (2005) 164-169
[50] H.S. Uh, S.M. Lee, P.G. Jeon, B.H. Kwak, S.S. Park, S.J. Kwon, E.S. Cho, S.W. Ko, J.D. Lee, C.G. Lee. Thin Solid Films 462–463 (2004) 19- 23.
[51] S. Lee, W. B. Im, J. H. Kang, D. Y. Jeon. J.Vac. Sci. Technol. B 23 (2005) 745-748.
[52] A.N. Jiang, S. Gao, X.L. Wei, X.L. Liang, Q. Chen. J. Phys. Chem. C 112 (2008) 15631-15636.
[53] M.H. Zhao, V. Sharma, H.Y. Wei, R.R. Birge, J.A. Stuart, F. Papadimitrakopoulos, B.D. Huey. Nanotechnology 19 (2008) 235704
[54] S.J. Zhang, H.M. Feng, J.P. Wang, H.Q. Yu. J. Colloid Interface Sci. 321 (2008) 96-102.
[55] S.J. Zhang, H.Q. Yu, H.M. Feng. Carbon 44 (2006) 2059-2068.
[56] H. Rong , Z.Y. Ryu, J.T. Zheng, Y.L. Zhang. Carbon 40 (2002) 2291-2300
[57] H.M. Feng, S.J. Zhang, Y.Z. Chen, Y.W. Ding, H.Q. Yu, Michael H.W. Lam.Ind. Eng. Chem. Res. 48 (2009) 3398-3402.
[58] Z.Y. Ryu, JT Zheng, M.Z. Wang. Carbon 36 (1998) 427-432.
[59] A. Gupta, I.R. Hrrison. Carbon 34 (1996) 1427-1445.
[60] P.H. Wang, K. Hong, Q.R. Zhu. J. Appl. Polym. Sci. 62 (1996) 1987-1991.
[61] Y.R. Suhng, K. Hashizume, T. Kanekoax, S. Otani, S. Yoshimura. Synth. Met. 86 (1997) 2285-2286.
[62] H. Konno, T. Nakaiiashi, M. Inagaki. Carbon 35 (1997) 669-674.
[63] Y. Hishiyama, A. Yoshida, Y. Kaburagi and M. Inagaki. Carbon 30 (1992) 517-519.
[64] S. Chen, H. Zeng. Carbon 41 (2003) 1265-1271
[65] S.G. Fabian, M.A. Amelia, J.M.D. Tascon. Carbon 42 (2004) 1419-1426
[66] Q.L. Wu, Z.H. Zhang, S.Y. Gu, J.H. Gong. J. Macromolecular Sci. Part A: Pure and Applied Chemistry, 43 (2006)1787-1792.
[67] W.X. Zhang, Y.Z. Wang, C.F. Sun. J. Polym. Res. 14 (2007) 467-474.
[68] M.S.A. Rahaman, A.F. Ismail, A. Mustafa. Polym. Degrad. Stab. 92 (2007) 1421-1432.
[69] D. Zhu, A. Koganemaru, C. Xu, Q.D. Shen, S.L. Li, M. Matsuo. J. Appl. Polym. Sci. 87 (2003) 2063-2073.
[70] M. Jing, C.G. Wang, Q. Wang, Y.J. Bai, B. Zhu. Polym. Degrad. Stab. 92 (2007) 1737-1742.
[71] H.M. Hathorne, C. Baker, R.H. Bentall, K.R. Linger.Nature 227 (1970) 946-947
[72] Y.Z. Song, G.T. Zhai, J.L. Shi, Q. Guo, L. Liu. J. Mater. Sci. 42 (2007) 9498-9500.
[73] K. Naito, J.M. Yang , Y. Xu, Y. Kagawa. Carbon 48 (2010) 1849-1857.
[74] K. Naito, J.M. Yang , Y. Xu, Y. Kagawa. Appl. Phys. Lett. 92 (2008) 231912.
[75] O.Y. Qin, L. Cheng, H.J. Wang, K. Li. Polym. Degrad. Stab. 93 (2008) 1415-1421
[76] S.H. Bahrami, P. Bajaj, K. Sen. J. Appl. Polym. Sci. 89 (2003) 1825-1837.
[77] P. Bajaj, T.V. Screekumar, K. Sen. J. Appl. Polym. Sci. 86 (2002) 773-787.
[78] J.J. Liu, H.Y. Ge, C.G. Wang. J. Appl. Polym. Sci. 102 (2006) 2175-2179.
[79] R. Devasia, C.P. Reghunadhan Nair, R. Sadhana, N.S. Babu, K.N. Ninan. J. Appl. Polym. Sci. 100 (2006) 3055-3062.
[80] Q. Ouyang, L. Cheng, H.J. Wang, Y.H. Sun. Acta. Chim. Sin. 65 (2007) 2941-2946.
[81] H.Y. Ge, H.S. Liu, J. Chen, C. Wang. J. Appl. Polym. Sci. 108 (2008) 947-952.
[82] P. Bajaj, T. V. Sreekumar, K. Sen. J. Appl. Polym. Sci. 79 (2001) 1640-1652.
[83] W.X. Zhang, Y.Z.Wang, C.F. Sun. J. Polym. Res. 14 (2007) 467-474.
[84] M.S.A. Rahaman, A.F. Ismail, A. Mustafa. Polym. Degrad.Stab. 92 (2007) 1421-1432.
[85] D. Zhu, A. Koganemaru, C. Xu, Q.D. Shen, S.L. Li, M.J. Matsuo Appl. Polym. Sci. 87 (2003) 2063-2073.
[86] M. Jing, C.G. Wang, Q. Wang, Y.J. Bai, B. Zhu. Polym. Degrad. Stab. 92 (2007) 1737-1742.
[87] M. Endo, Y.J. Kim. T. Chinol, O. Shinya, Y. Matsuzawa, H. Suezaki, K. Tantrakarn, M.S. Dresselhaus Appl. Phys. A 82 (2006) 559-565
[88] C.S. Zhang, Q.Q. Ni, S.Y. Fu, K. Kurashiki. Comp. Sci. Technol. 67 (2007) 2973-2980
[89] I. Yamanaka, T. Hashimoto, R. Ichihashi, K. Otsuka. Electrochim. Acta. 53 (2008) 4824-832
[90] I. Yamanaka, K. Komabayashi, A. Nishi, K. Otsuka. Catal. Today. 71 (2001) 189-197
[91] http://www.sdk.co.jp/html/rd/monthly_sprout/0303.html
[92] http://www.sdk.co.jp/aa/news/2001/aanw_01_0059.html
[93] S.R. Dhakate, R.B. Mathur, T.L. Dhami. J. Mater. Sci. 41 (2006) 4123-4131
[94] M.S. Wu, J.T. Lee, P.C. Chiang, J.C. Lin. J. Mate.r Sci. 42 (2007) 259-265
[95] http://www.sdk.co.jp/products/46/80.html
[96] J. H. Kim, H.S. Ganapathy, S.S. Hong, Y.S. Gal, K.T. Lim. J. Supercritical Fluids 47 (2008) 103-107.
[97] M.J. Meziani, P. Pathak, W. Wang, T. Desai, A. Patil, Y.P. Sun. Ind. Eng. Chem. Res. 44 (2005) 4594-4598.
[98] E. Reverchon, R. Adami. J. Supercritical Fluids 37 (2006) 1-22
[99] J. Xie, P.K. Sharma, V.V. Varadan, V.K. Varadan, B.K. Pradhan, S. Eser. Mater. Chem.Phys. 76 (2002) 217-223
[100] T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J.J. Hu, V.S. Bhadram, C. Narayana, T.S. Fisher. ACS Appl. Mater. Interfaces 2 (2010) 644-648.
[101] B.Q. Wei, R. Vajtai, P.M. Ajayan. Carbon 41 (2003) 179-198.
[102] G.B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y.F. Shi,H.J. Quan. Carbon 42 (2004) 635-640.
[103] K.J. Lee, J.H. Oh, Y. Kim, J. Jang, Adv. Mater. 18 (2006) 2216-2219.
[104] S. Nair, P. Naredi, S. H. Kim. J. Phys. Chem. B 109 (2005) 12491-12497.
[105] L. Liu, N.Q. Jia, Q. Zhou, M. M. Yan, Z.Y. Jiang. Mater. Sci. Eng. C 27 (2007) 57-60.
[106] H. Ono, A. Oya. Carbon 41 (2003) 1443-1450.
[107] K. Fukuyama , Y. Kasahara , N. Kasahara , A. Oya , K. Nishikawaa Carbon 39 (2001) 287-324.
[108] D. Hulicova, K. Hosoi, S.I. Kuroda , A. Oya. Carbon 43 (2005) 1246-1253.
[109] Eliton S. Medeiros, Gregory M. Glenn, Artur P. Klamczynski, William J. Orts, Luiz H.C. Mattoso. J. Appl. Polym. Sci. 113 (2009) 2322–2330.
[110] S. Borkar, B. Gu, M. Dirmyer, R. Delicado, A. Sen, B. R. Jackson, J. V. Badding. Polymer 47 (2006) 8337-8343
[111] Christopher J. Ellison, Alhad Phatak, David W. Giles, Christopher W. Macosko, Frank S. Bates. Polymer 48 (2007) 3306-3316
[112] M. Antunes, V. Realinho, E. Solorzano, M.A. Rodriguez-Perez, J.A. de Saja , J.I. Velasco1. Defect and Diffusion Forum 297-301 (2010) 996-1001.
[113] S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi. Carbon 48 (2010) 3575–3578.
[114] R. Kessick, G. Tepper. Appl. Phys. Lett. 83(2003) 557-559.
[115] K. Ohgo, C. Zhao, M. Kobayashi, T. Asakura. Polymer 44 (2003) 841-846.
[116] P. Gupta, G. L. Wilkes. Polymer 44 (2003) 6353-6359.
[117] B. Ding, H.Y. KIM, C.L. Shao. J. Polym. Sci. Part B 40 (2002) 1261-1268.
[118] M.Shin, G. Rutledge, M.P. Brenner. Phys. Fluids, 13( 2001) 2201-2220.
[119] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff. Adv. Mater. 13(2001) 70-72.
[120] Formhals A. U.S. Patent 1,975,504, 1934.
[121] Y. Wang, S. Serrano, J. J. Santiago-Aviles. J. Mater. Sci. Lett. 21( 2002) 1055-1057
[122] Q. Zhao, Y. Xin, Z. Huang, S. Liu, C. Yang, Y.F. Li. Polymer 48 (2007) 4311-4315.
[123] N. Sharma, G. H. Jaffari, S. I. Shah, D. J. Pochan. Nanotechnology 21 (2010) 085707.
[124] T. Song, Y.Z. Zhang, T.J. Zhou. J. Magn. Magn. Mater. 303 (2006) e286–e289
[125] J.C. Di, H.Y. Chen, X.F. Wang, Y. Zhao, L. Jiang, J. Yu, R. Xu. Chem. Mater. 20 (2008) 3543-3545.
[126] D.W. Han, A. J. Steckl. Langmuir 25 (2009) 9454-9462.
[127] L.L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang. J. Biomed. Mater. Res. Part A (2009) 563-574.
[128] M.Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, P. I. Lelkes. Biomaterials 27 (2006) 2705-2715.
[129] W. Shi, W. Lu, L. Jiang. J. Colloid. Interface. Sci. 340 (2009) 291-297
[130] X.F. Lu, Y.Y. Zhao, C. Wang. Adv. Mater. 17 (2005) 2485-2488.
[131] E.J. Ra, K.H. An, K.K. Kim, S.Y. Jeong, Y.H. Lee. Chem. Phys. Lett. 413 (2005) 188-193.
[132] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko. Carbon 44 (2006)1624-1652.
[133] T. Kashiwagi, J. Fagan, J.F. Douglas, K. Yamamoto, A.N. Heckert,
S.D. Leigh. Polymer 48 (2007) 4855-4866.
[134] K. H. Wong, M. Z.Allmang, J. L. Hutter, S. Hrapovic, J.H.T. Luong, W.K. Wan. Carbon 47 (2009) 2571-2578.
[135] Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen,A. L. Yarin, E. Zussman. Langmuir 19(2003) 7012-7020.
[136] B. Z. Tang, H. Xu. Macromolecules 32 (1999) 2569.
[137] D.F. Wu, T.J. Shi, T. Yang, Y.R. Sun, L.F. Zhai, W.D. Zhou, M. Zhang, J. Zhang. Eur. Polym. J. 47 (2011) 284-293.
[138] Y. Liu, J. Li, Z, J. Pan. J. Polym. Res.(2011) 1-6.
[139] A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, X. Du. Composites Sci. Tech. 70 (2010) 1401–1409.
[140] J.S. Jeong, S.Y. Jeon, T.Y. Lee. Diamond Relat Mater. 15 (2006) 1839-1843.
[141] S.C. Kang, J. S. Im, S.H. Lee, T.S. Bae, Y.S. Lee. Colloids Surf., A (2011) in press.
[142] J. Gou. Polym. Int. 55 (2006) 1283-1288.
[143] J. L. Bahr, J.P. Yang, D.V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour. J. Am. Chem. Soc. 123 (2001) 6536-6542.
[144] U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, S. H. Jhang. J. Am. Chem. Soc. 127 (2005) 5125-5131.
[145] N. P. Zschoerper, V. Katzenmaier, U. Vohrer, M. Haupt, C. Oehr, T. Hirth. Carbon 47 (2009) 2174-2185.
[146] B. Kakade, R. Mehta, A. Durge, S. Kulkarni, V. Pillai. Nano. Lett. 8 (2008) 2693-2696.
[147] X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar. J. Phys. Chem. B 108 (2004) 16435-16440.
[148] Li-Feng Cui, Yuan Yang, Ching-Mei Hsu, Yi Cui. Nano Lett. 9 (2009) 3370-3374.
[149] L. F. Cui, L. Hu, J. W. Choi, Y. Cui. ACS Nano 4 (2010) 3671–3678.
[150] L. Hu, H. Wu, Y. Cui. Appl. Phys. Lett. 96 (2010) 183502.
[151] S.W. Oh, S.H. Park, Y.K. Sun, J. Power. Sources. 161 (2006) 1314-1318.
[152] Y.F. Su, Y.C. Weng, T.C. Chou, J. Electrochemical Soc. 155 (2008) 23-29.
[153] S.W. Yang, L. Gao, J. Am. Ceram. Soc. 88 (2005) 968-970.
[154] B.H. Kim, J.Y. Lee, Y.H. Choa, M. Higuchi, N. Mizutani, Sci. Eng. B: Solid-State Mater. Adv. Tech. 107 (2004) 289-294.
[155] T.N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, J. Photochem. Photobiol. A Chem. 164 (2004) 187-197.
[156] Z.Y. Yuan, B.L. Su. Colloids. Surf. A 241 (2004) 173-183.
[157] X.W. Wang, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J. Phys. Chem. C. 112 (2008) 5384-5389.
[158] H.S. Kim, M.R. Kim, H.J. Kang, J. K. Lee, Mol. Cryst. Liq. Cryst. 464 (2007) 65-71.
[159] Y. L. Liu, W.H. Chen. Macromolecules 40 (2007) 8881–8886.
[160] X.W. Pei, Y.Q. Xia, W.M. Liu, B. Yu, J.C. Hao, J. Polym. Sci. Part A: Polym. Chem. 46 (2008) 7225-7237.
[161] G. Mountrichas, S. Pispas, N.Tagmatarchis. Mater. Sci. Eng. B 152 (2008) 40-47.
[162] H. Kong, P. Luo, C. Gao, D.Y. Yan. Polymer 46 (2005) 2472-2485.
[163] A.M. Shanmugharaj, J.H. Bae, R.R. Nayak, S.H.Ryu. J. Polym. Sci. Part A: Polym. Chem. 45 (2007) 460-470.
[164] X. Wang, Z.G. Du, C. Zhang, C.J. Li, X.P.Yang, H.Q. Li, J. Polym. Sci., Part A: Polym. Chem. 46 (2008) 4857-4865.
[165] H.X. Xu, X.B. Wang, Y.F. Zhang, S.Y. Liu. Chem. Mater. 18 (2006) 2929-2934.
[166] W.J. Chou, C.C. Wang, C.Y. Chen, J. Inorg. Organomet. Polym. Mater. 19 (2009) 234-242.
[167] C.H. Tseng, C.Y. Chen, Nanotechnology 19 (2008) 0356061-8.
[168] C.H. Tseng, C.Y. Chen, C.C.Wang. Nanotechnology 17 (2006) 5602-5612.
[169] C.H. Tseng, C.Y. Chen, C.C.Wang. J. Phys. Chem. B 110 (2006) 4020-4029.
[170] W.J. Chou, C.C.Wang , C.Y. Chen, Compos. Sci. Technol. 68 (2008) 2208-2213.
[171] I.H. Chen, C.C.Wang , C.Y. Chen. Plasma Process. Polym. 7 (2010) 59-63.
[172] R.E. Rosensweig. Ferrohydrodynamics. Cambridge: Cambridge University Press (1985) 50-53.
[173] R. Tadmor, R.E. Rosensweig, J. Frey, J. Klein. Langmuir 16 (2000) 9117-9120.
[174] X. Liu, M. D. Kaminski, Y. Guan, H. Chen, H. Liu, A. J. Rosengart. J. Magn. Magn. Mater. 306 (2006) 248-253.
[175] C.R. Lin, C.C. Wang, I.H. Chen. J. Appl. Phy. 99 (2006) 1-3
[176] C.R. Lin, C.C. Wang, I.H. Chen. J. Magn. Magn. Mater. 304 (2006) e451-e453.
[177] C.R. Lin, C.C. Wang, I.H. Chen. J. Magn. Magn. Mater. 304 (2006) e34-e36.
[178] I.H. Chen, C.C. Wang, C.Y. Chen. Scr. Mater. 58 (2008) 37-40.
[179] K. Yasukawa, M. Nishimura. J. Am. Ceram. Soc. 90 (2007) 1107-1114
[180] B.D. Cullity, Introduction to Magnetic Materials, Addison Wesley, New York, 1972, p. 129.
[181] G. Chao, Z.J. Yi, K. Hao, L.D.W. Raymond, F.A.A. Steve, G.Y. Chen, H. Qian, H. Achim, S.R.P. Silva, H. Simon, F. Peter, W.K. Harold , R.M.W. David. J. Phys. Chem. B 109 (2005) 11925.
[182] A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus , M.S. Dresselhaus New J. Phys. 5 (2003) 139.
[183] F.C. Kung, M.C. Yang. Polym. Adv. Technol. 17 (2006) 419-425.
[184] I. Francesca, T. Sonia, P. Francesco, C. Giuseppe, G.S. Umile, M. Rita, P. Nevio. Bioscience 5 (2005) 1049-1056.
[185] J.M. Deitzel , J.D. Kleinmeyer, J.K. Hirvonen, N.C. Beck Tan Polymer 42(2001) 8163-8170.
[186] J.M. Deitzel, W. Kosik, S.H. McKnight, N.C. Beck Tan, J.M. DeSimone, S. Crette. Polymer 43 (2002) 1025-1029.
[187] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman. Polymer 43 (2002) 3303-3309.
[188] R.V.N. Krishnappa, K. Desai, C. Sung. J. Mater. Sci. 38 (2003) 2357-2365.
[189] P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes. Polymer 46 (2005) 4799-4810.
[190] A. Varesano, A. Aluigi, C. Vineis, C. Tonin. J. Polym. Sci. Part B: Polym. Phys. 46 (2008) 1193-1201.
[191] C. Wang, H.S. Chien, C.H. Hsu, Y.C. Wang, C.T. Wang, H.A. Lu. Macromolecules 40 (2007) 7973-7983.
[192] S. Dalton, F. Heatley, P.M. Budd. Polymer 40 (1999) 5531–5543.
[193] J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol. Polym. Int. 55 (2006) 825-833.
[194] H. Kikada, K. Tashiro. Polym. J. 29(1997) 557-562.
[195] B.S. Jung. J. Membr. Sci. 229 (2004)129-136.
[196] R.I.R. Blyth, H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard. Appl. Surf. Sci. 167 (2000) 99-106.
[197] J. Garcia-Otero, M. Porto, J. Rivas, A. Bunde. Phys. Rev. Lett. 84 (2000)167-170.
[198] S.F. Yan, J.B. Yin, E.L. Zhou. Colloids Surf. A Physicochem. Eng. Aspect 287 (2006) 153-157.
[199] Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman. Langmuir 19 (2003) 7012-7020.
[200] F. Tuinstra, J.L. Koenig. J. Chem. Phys. 53 (1970) 1126-1130.
[201] D.S. Knight, W.B. White. J. Mater. Res. 4 (1989) 385-393.
[202] S. Prilutsky, E. Zussman, Y. Cohen. Nanotechnology 19 (2008) 165603
[203] M. H. Al-Saleh, U. Sundararaj. Carbon 47 (2009) 1738-1746.
[204] Z.F. Liu, G. Bai, Y. Huang, Y.F. Ma, F. Du, F.F. Li, T.Y. Guo, Y.S.Chen. Carbon 45 (2007) 821-827.
[205] N.C. Das, Y.Y. Liu, K. Yang, W. Peng, S. Maiti, H. Wang. Polym. Eng. Sci. 49 (2009) 1627-1634.
[206] Y.H. Huang, Y.F. Huang, C.Y. Huang, C.Y. Chen. J. Hazardous Mater. 170 (2009) 1110-1118.
[207] I.C. McNeill. Comprehensive Polym. Sci. 6 (1989) 458-462.