簡易檢索 / 詳目顯示

研究生: 陳奕瀚
Chen, I-Han
論文名稱: 利用新穎電紡絲技術製備複合奈米碳纖維材料之研究
Fabrication and Characterization of Carbon Nanofibers Composite by the Novel Electrospinning
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 碳纖維靜電紡絲表面修飾聚丙烯腈光觸媒
外文關鍵詞: Carbon nanofibers, Poly acrylonitrile(PAN), Electrospinning, Superparamagnetic, Titanium dioxide
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳纖維是一具有耐熱性好、質量輕、高強度、低膨脹係數的高性能導電纖維,因此,碳纖維廣泛的被應用到補強材料以及電子產品等各項民生用品上。目前碳纖維製備所用的原料主要可分為纖維素系碳纖維、聚丙烯腈系碳纖維及瀝青系碳纖維等三大類;其中,又以聚丙烯腈系碳纖維為最大宗,因為,以此原料所製備出來之碳纖維的強度最佳且碳化效率也較高。隨著近年來奈米材料的發展,具有更高強度、高比表面積與質輕特性的奈米纖維受到各界的矚目。因此,本研究主要是以新穎電紡絲設備來製備出以聚丙烯腈系(polyacrylonitrile, PAN)為主之複合奈米纖維,其新穎設備內容主要是利用加速內管的離心力配合著電場作用來使得奈米纖維材料獲得相當程度之牽伸,進而得到奈米尺寸等級之複合纖維。利用此新穎技術不但保留了原先電紡絲的優點更能將產量大幅的提升。
    本實驗第一部分為導入表面修飾後之CoFe2O4磁性奈米粒子均勻的分散在電紡溶液中,用以製備出具有磁性的複合奈米纖維。經由電子顯微鏡觀察發現紡製出來之奈米纖維其直徑約為80nm,而此磁性複合奈米纖維的磁性隨著後續熱處理溫度的不同,可由45 emu/g增加至63emu/g。另外,電磁波遮蔽試驗證實磁性複合奈米碳纖維的電磁波遮蔽效率可達40dB以上。第二部分則是導入經電漿表面接枝修飾後之奈米碳管(carbon nanotubes, CNTs)於聚丙烯腈電紡溶液當中進行靜電紡絲。藉由控制不同的實驗參數將可獲得不同尺寸之奈米纖維。除此之外,經由穩定化與碳化製程處理後可獲得具導電性之複合奈米碳纖維。由電阻值的量測可以發現奈米碳管的加入有助於使碳纖維於750℃低碳化溫度處理後就能夠獲得高導電度之奈米碳纖維產物。最後,本研究也利用此套新穎電紡設備來製得具光觸媒特性之二氧化鈦奈米纖維。本研究選用聚甲基丙烯酸甲酯來當作黏著劑,並加入有機鈦鹽製備出直徑約為50nm之二氧化鈦奈米纖維。並利用後續高溫燒結製程來獲得具有光催化特性之二氧化鈦奈米纖維。經光催化實驗結果顯示,利用此二氧化鈦奈米纖維來催化偶氮染料時,於50分鐘的處理時間,溶液的去色率即可達到99%以上;在芳香環降解方面,在80分鐘時亦可達到99%的降解率。結果證實此二氧化鈦奈米纖維的確有不錯的光催化特性。

    Carbon nanofibers have attracted significant interest in the scientific community. They possess special properties that are important in the preparation of polymer composites, including a high strength and aspect ratio, good thermal and electrical conductivities, and low density. These properties lead the carbon fibers can be applied for industrial use. Usually, the main precursors for the carbon fiber synthesis are cellulose, poly acrylonitrile(PAN) and pitch. Especially, PAN is the large amount of carbon fiber preparation due to the yield, performance and price. In recent years, many methods have been reported to fabricate nanofibers, including supercritical fluid techniques, chemical vapor deposition (CVD) and vapor deposition polymerization (VDP) using anodic aluminum oxide (AAO) as a template. The methods used in the above-mentioned studies cannot fabricate uniformly-sized nanofibers on a large scale, and the synthesis processes are also very complex. In order to solve the vital issues we set up the novel electrospinning process and obtain the nanofibers via the equipment. The process not only retains the advantages of the traditional electrospinning process but also improves the yield of the nanaofibers.
    In the first section of this study, an electrospinning process was used to fabricate cobalt ferrite (CoFe2O4)-embedded polyacrylonitrile (PAN) nanofibers. Oleic acid-modified CoFe2O4 nanoparticles were dispersed in the PAN before spinning. The surface morphologies and structures of the nanofibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observation showed that the average diameter of the CoFe2O4/PAN nanofibers was 110 nm, and the magnetic CoFe2O4 nanoparticles were embedded in the PAN nanofibers. X-ray photoelectron spectroscopy was used to characterize the CoFe2O4/PAN and CoFe2O4/carbon nanofibers. Fiber magnetic properties were measured by vibrating sample magnetometry, showing that the saturation magnetization of the CoFe2O4/PAN nanofibers was 45 emu/g and that the fibers demonstrated superparamagnetic behavior.
    In the second section of this study, hybrid nanofibers with different concentrations of functionalized carbon nanotubes (CNTs) in polyacrylonitrile (PAN) were fabricated using the electrospinning technique and subsequently carbonized. Acrylonitrile-modified CNTs were dispersed in the PAN before electrospinning. The surface morphologies and structures of the nanofibers were characterized by Raman spectroscopy, and scanning and transmission electron microscopy, which showed that the average diameter of the CNT/PAN nanofibers was 110 nm and that the CNTs were embedded in the nanofibers. Raman results indicate that embedded CNTs in the PAN nanofibers nucleate the growth of carbon crystals during PAN carbonization. The lowest sheet resistance of the carbon nanofiber was 8Ω/sq, and the electromagnetic interference shielding efficiency was about 40 dB. Finally, high performance titanium dioxide (TiO2) nanofibers sheet were fabricated via one-step electrospinning technique for azo-dye decomposition. Scanning electron microscopy and transmission electron microscopy showed that the TiO2 nanofibers are smoothly and the mean diameter of the prepared nanofibers are 50nm. X-ray diffraction (XRD) patterns present that the crystal phase of the TiO2 is anatase.

    目 錄 摘要---------------------------------------------------- Ⅰ Abstract------------------------------------------------ Ⅲ 致謝---------------------------------------------------- Ⅵ 目錄----------------------------------------------------- Ⅷ 表目錄--------------------------------------------------- XI 圖目錄-------------------------------------------------- XII 第一章 緒論--------------------------------------------- 1 第二章 文獻回顧-------------------------------------------4 2-1 碳纖維的發展概況--------------------------------------- 4 2-2 碳纖維製造方法----------------------------------------- 8 2-2-1有機纖維法------------------------------------------- 8 2-2-1-1 瀝青系碳纖維製備工程------------------------------- 10 2-2-1-2 嫘縈系碳纖維製備工程------------------------------- 12 2-2-1-3 丙烯腈系碳纖維製備工程----------------------------- 13 2-2-2氣相生長法------------------------------------------ 16 2-3 奈米纖維製作方法---------------------------------------18 2-3-1 超臨界流體法(Supercritical fluid) ----------------- 19 2-3-2 化學氣相沉積法(Chemical vapor deposition) ---------- 21 2-3-3 陽極氧化鋁模板法(Anodic aluminum oxide template)---- 22 2-3-4聚合物混摻熔融紡絲法---------------------------------- 23 2-3-5噴流法---------------------------------------------- 23 2-3-6電紡絲法-------------------------------------------- 25 2-3-7 多功能複合奈米纖維---------------------------------- 27 2-4 超細碳纖維材料的特性及應用----------------------------- 34 2-5 光觸媒二氧化鈦奈米纖維--------------------------------- 35 2-6 研究方法與目的--------------------------------------- 37 第三章 實驗部分------------------------------------------- 40 3-1 實驗藥品--------------------------------------------- 40 3-2 使用儀器--------------------------------------------- 41 3-3 實驗步驟--------------------------------------------- 44 3-3-1 CoFe2O4磁性奈米粒子製備與表面修飾-------------------- 44 3-3-2奈米碳管純化---------------------------------------- 44 3-3-3多壁奈米碳管接枝丙烯腈之製備方法與改質技術-------------- 44 3-3-4 複合電紡溶液配製------------------------------------ 45 3-3-4-1 CoFe2O4/PAN 電紡溶液配製-------------------------- 45 3-3-4-2 CNT/PAN電紡溶液配製----------------------------- 45 3-3-4-3 二氧化鈦電紡溶液配製----------------------------- 46 3-3-5 複合奈米纖維製備------------------------------------ 46 3-3-6無機複合奈米纖維製備--------------------------------- 46 3-3-6-1 CoFe2O4/carbon複合奈米纖維製備---------------- 46 3-3-6-2 CNTs/carbon複合奈米纖維製備------------------- 46 3-3-6-3 二氧化鈦奈米纖維製備----------------------------- 47 3-4 分析方法--------------------------------------------- 47 3-4-1 CoFe2O4奈米磁性粒子分析----------------------------- 47 3-4-2 奈米碳管表面接枝高分子之分析------------------------- 48 3-4-3複合奈米纖維材料性質分析------------------------------ 48 第四章 結果與討論 4-1 CoFe2O4奈米粒子製備與改質----------------------------- 50 4-2 CoFe2O4奈米粒子磁性分析------------------------------- 54 4-3奈米碳管接枝丙烯腈之鑑定分析---------------------------------- 57 4-4奈米碳管接枝丙烯腈於溶劑中之穩定性測試------------------- 62 4-5複合磁性奈米纖維織製備與分析鑑定------------------------- 63 4-5-1 電場強度對纖維結構之影響------------------------------ 63 4-5-2 高分子溶液濃度對纖維結構之影響----------------------- 65 4-6 CoFe2O4/PAN奈米纖維不織布之型態------------------------ 66 4-6-1 CoFe2O4/PAN奈米纖維之結構與性質分析--------------- 67 4-7 CNTs/PAN奈米纖維不織布之型態--------------------------- 79 4-7-1 CNTs /PAN奈米纖維之結構與性質分析------------------ 80 4-7-2 CNTs/Carbon複合奈米纖維分析------------------------- 83 4-8 碳纖維不織布於電磁波遮蔽材料之應用---------------------- 95 4-9 光觸媒二氧化鈦奈米纖維製備與分析------------------------- 98 4-10 PAN/PMMA複合奈米纖維製備與分析---------------------- 107 第五章 結論-------------------------------------------- 113 參考文獻------------------------------------------------ 116 著作--------------------------------------------------- 134 自述--------------------------------------------------- 136 表目錄 Table 2-1:昭和電工多層碳奈米管主要物性---------------------- 18 Table 2-2 常見奈米纖維製備技術----------------------------- 27 Table 4-1: Curie Temperature (Tc) of various magnetic materials.--------------------------------------------- 76 Table 4-2: Magnetic properties of CoFe2O4 nanoparticles, CoFe2O4/PAN nanofibers and CoFe2O4/carbon nanofibers.---- 78 Table 4-3: The sheet resistance of CNTs/carbon nanofibers non-woven mats depending on the carbonization temperature and CNTs concentrations. ------------------------------- 87 Table 4-4: The R-value (ID/IG) of CNTs/carbon nanofibers in non-woven mats with various carbonization temperatures and CNTs concentrations. ----------------------------------- 90 Table 4-5: The crystallite size of CNTs/carbon nanofibers depending on various carbonization temperatures and CNTs concentrations. ---------------------------------------- 91 Table 4-6: The grain size and fraction of rutile phase at various calcinations temperatures. --------------------- 104 圖目錄 Figure 2-1: Visualization of a possible carbon nanotube growth mechanism ---------------------------------------- 4 Figure 2-2: The crystalline structure of graphite -------- 5 Figure 2-3: The preparation process of rayon from cellulose ---------------------------------------------- 10 Figure 2-4: 昭和公司以氣相成長方式所製備出來之碳奈米纖維(a) VGCF; (b) VGNF ----------------------------------------- 18 Figure 2-5: (a)超臨界流體製備PAN奈米纖維示意圖;(b)經由碳化後所 得到之碳纖維 ------------------------------------ 20 Figure 2-6: SEM images of the PHDFDA nanofibers from RESOLV with the rapid expansion of a concentrated polymer solution (5 wt % left; 2wt% right) into an aqueous NaCl solution-- 21 Figure 2-7: 以陽極氧化鋁模板所備出之高分子纖維管柱----------- 22 Figure 2-8: 聚合物混摻熔融紡絲法製造極細碳纖維--------------- 23 Figure 2-9: Schematic of blow spinning setup ----------- 24 Figure 2-10: SEM images of a fiber mat (a) formed by jet-blowing of PTFE 601A fine powder starting material with a granule size of ~0.5 mm (see inset) in nitrogen at a temperature (340 oC); (b) jet blown at 310 oC ----------- 25 Figure 2-11: 電紡絲示意圖-------------------------------- 26 Figure 2-12: (a)Contact angle measurements: water droplet on a PCL film, Teflon film, PCL-only fiber membrane and coaxial PCL/ Teflon fiber membrane; (b) photograph of a two- layermembrane (inset: high-magnification photograph of a waterdroplet on a surface) ----------------------------- 28 Figure 2-13: TEM micrograph of the C-PLGA/chitosan fiber and SEM micrographs of hESFs cultured for 5 days on the electrospun membranes of PLGA (a), H-PLGA/chitosan (b), C-PLGA /chitosan (c) and chitosan (d) ---------------------29 Figure 2-14: SEM micrographs of gelatin fibers and morphology of H9c2 myoblast cells at 20 h of post-seeding on (a) and PANi- gelatin blend fibers with ratios of (b) 15:85; (c) 30:70; (d) 45:55 PANi-gelatin blend fibers --- 30 Figure 2-15: TEM micrographs of (a) and (b) electrospun AuNP peapod silica nanofibers after thermal treatment; (c) electrospun Au NPs sesame silica nanofibers after thermal treatment; (d) electrospun AuNPs embedded in silica nanofibers after thermal treatment at 2% of AuNPs weight concentration ------------------------------------------- 31 Figure 2-16: TEM images of PbS nanoparticles formed in PVP fibers (a–c), and selected area electron diffraction (SAED) patterns of the PbS nanoparticles in the PVP fibers (d)---32 Figure 3-1: 奈米碳管接枝丙烯腈之示意圖---------------------- 45 Figure 3-2: Approach for the synthesis of carbon fiber from PAN precursor ------------------------------------------ 47 Figure 4-1: TEM images of the CoFe2O4 nanoparticles (a) low; (b) high magnification ----------------------------- 50 Figure 4-2: Photographs of modified CoFe2O4 (right) and unmodified CoFe2O4(left) nanoparticles dispersed in DMF-- 51 Figure 4-3: Illustration of the main mechanism between Fe3O4 nanoparticles and oleic acid ---------------------- 52 Figure 4-4: TGA curves of (a) pristine CoFe2O4 nanoparticles; (b) oleic acid modified CoFe2O4 nanoparticles ------------------------------------------ 53 Figure 4-5: XRD pattern of CoFe2O4 --------------------- 53 Figure 4-6: M-H curves of (a) modified CoFe2O4; (b) pristine CoFe2O4 nanoparticles ------------------------- 56 Figure 4-7: FC-ZFC curve of CoFe2O4 nanoparticles ------ 56 Figure 4-8: TEM images of (a) pristine CNTs and (b) CNT-g-AN ----------------------------------------------------- 58 Figure 4-9: Raman spectra under 532 nm excitation of (a) pristine CNTs; (b) CNTs after plasma treatment; (c) CNTs after acid oxidation ----------------------------------- 59 Figure 4-10: XPS survey (on the left) and deconvolved (on the right) spectra of the C 1s peak of pristine CNTs (top) and CNT-g-AN (bottom) ---------------------------------- 61 Figure 4-11: Digital photographs of CNT-g-AN (left) and pristine CNTs (right) dispersed ------------------------ 63 Figure 4-12: SEM images of electrospun nanofibers at various bias voltages: (a)10, (b)15, (c)20, (d)25 kV --------------------------------------------------------------- 64 Figure 4-13: SEM images of CoFe2O4/PAN electrospun nanofibers at various viscosity: (a) 40, (b) 60, (c) 80 and (d) 100 cp ----------------------------------------------6 Figure 4-14: Photographs of (a) CoFe2O4/PAN; (b) stabilized CoFe2O4 /PAN; (c) CoFe2O4/carbon non-woven fabrics ----------------------------------------------------------------- 67 Figure 4-15: FT-IR spectra of (a) CoFe2O4/PAN, (b) stabilized CoFe2O4/PAN and (c) CoFe2O4/carbon nanofibers ----------------------------------------------------------- 69 Figure 4-16: Raman spectra under 532 nm excitation of (a) CoFe2O4/PAN; (b) CoFe2O4/carbon nanofibers ------------------------------------------------------------------------- 69 Figure 4-17: XPS spectra of (a) broad scan of CoFe2O4/PAN and CoFe2O4/carbon nanofibers; Deconvoluted XPS spectra of the C 1s peak for (b) CoFe2O4/PAN and (c) CoFe2O4/carbon nanofibers -------------------------------------------- 71 Figure 4-18: XRD patterns of (a) CoFe2O4 nanoparticles; (b)CoFe2O4/PAN nanofibers and (c) CoFe2O4/carbon nanofibers ---------------------------------------------------------- 72 Figure 4-19: TEM images of (a) CoFe2O4/PAN nanofibers (scale bar 50nm); Inset shows low magnification (scale bar 1000 nm); (b) CoFe2O4/carbon nanofibers ---------------- 73 Figure 4-20: Magnetization curves of the magnetic fibers measured at 300 K with applied fields from -11000 to 11000 Oe. (a) CoFe2O4 /PAN nanofibers; (b) CoFe2O4 nanoparticles and (c) CoFe2O4 /carbon nanofibers. Inset 1 shows the low-field region (±1500 Oe) of the magnetization curves ---- 75 Figure 4-21: FC-ZFC curves of (a) CoFe2O4 nanoparticles; (b) CoFe2O4 /PAN and (c) CoFe2O4/carbon nanofibers ----- 77 Figure 4-22: Photographs of (a) CNTs/PAN; (b) stabilized CNTs/PAN; (c) CNTs/carbon non-woven fabrics ------------ 79 Figure 4-23: FT-IR spectra of (a) CNTs/PAN nanofibers, (b) stabilized CNTs/PAN nanofibers and (c) CNTs/carbon nanofibers -------------------------------------------- 81 Figure 4-24: SEM images of CNT/PAN nanofibers (a) PAN nanofibers, (b) nanofibers with 0.2wt% CNTs, (c) 0.5wt%, (d) 0.7wt% (e) 1.0wt% and (f) 2.0wt%. (All scale bars are 300nm) ----------------------------------------------- 82 Figure 4-25: TEM images of (a) PAN nanofibers (scale bar 200 nm) and (b) CNT/PAN nanofibers with 2.0 wt.% CNTs (scale bar 200nm) -------------------------------------- 85 Figure 4-26: The sheet resistance of the carbon nanofiber as a function of the CNTs content with various carbonization temperatures: 750 oC and (b) 900 oC ------ 86 Figure 4-27: Raman spectra of CNT/carbon nanofibers under 514nm excitation, with (a) 0, (b) 0.2, (c) 0.5, (d) 0.7, (e) 1.0 and (f) 2.0 wt%. CNTs -------------------------- 89 Figure 4-28: The R-value (ID/IG) for CNT/carbon nanofibers and crystal- lline domain size (La) of various CNT containing ratios, carbonized at (a) 750 °C, (b) 900 °C and (c) 1050 °C ------------------------------------------- 92 Figure 4-29: HR-TEM images of (a) carbon nanofibers, (b) CNTs/carbon nanofibers --------------------------------- 94 Figure 4-30: EMI SE of (a) CNTs/carbon and (b) CoFe2O4/carbon non -woven fabrics measured in the 300MHz-3GHz range --------------------------------------------- 97 Figure 4-31: (a) photograph and (b) SEM image of electrospun TiO2/ PVA fibers -------------------------- 98 Figure 4-32: TiO2水解縮合步驟示意圖 --------------------- 100 Figure 4-33: TGA curve of TiO2/PMMA ------------------- 102 Figure 4-34: XRD patterns of (a) (a) TiO2 precursor-PMMA nanofibers; (b) TiO2 nanofibers (450 ℃); (c) TiO2 nanofibers (550 ℃); ( d) TiO2 nanofibers (650 ℃)----- 102 Figure 4-35: TEM images of (a) TiO2/PMMA nanofibers; (b) TiO2 nanofibers. (scale bar 100 nm) and (c) high-resolution image(scale bar 5 nm) -------------------------------- 103 Figure 4-36: The chemical structure of Reactive Black B (RBB) ------------------------------------------------- 105 Figure 4-37: UV-Vis spectrum of RBB (100ppm) ---------- 105 Figure 4-38: The efficiency of RBB (A) decolorization and (B) aromatic ring destruction by UV light irradiation (a: without catalyst, b: TiO2 fiber micron size, c: TiO2 fiber nano size; TiO2 catalyst: 2.0g/L, RBB concentration: 100mg/L -----------------------------------------------106 Figure 4-39: Schematic of carbon nanofiber preparation by the polymer blending and electrospinning technique ---------------------------------------------------------------- 107 Figure 4-40: TEM images of various rations of PMMA: PAN nanofibers (a) 0:1; (b) 1:3 and (c) 1:1 --------------- 110 Figure 4-41: TEM images of various rations of PMMA: PAN nanofibers after carbonization (a) 0:1; (b) 1:3 and (c) 1:1 --------------------------------------------------- 111 Figure 4-42: TGA curves of (a) PAN; (b) PMMA/PAN nanofibers ((A) in air; (B) in Argon atmosphere) ----------------- 112

    [1] W. Zheng, S.C. Wong and H.J. Sue. Polymer 43 (2002) 767-6773.
    [2] X.M. Chen, J.W. Shen, W.Y. Huang. J. Mater. Sci. Lett. 21 (2002) 213-214.
    [3] Y.X. Pan, Z.Z. Yu, Y.Z. Ou, G.H. Hu, J. Polym. Sci. Part B Polym. Phys. 38 (2000) 1626-1633.
    [4] G.H. Chen, D.J. Wu, W.G. Weng, B. He, W.L. Yan, Polym. Int. 50 (2001) 980-985.
    [5] J.Y. Cao, L.S. Chen. Polym. Compos. 26 (2005) 713-716.
    [6] M. Sakai, R. Matsuyama, T. Miyajima. Carbon 38 (2000) 2123-2131.
    [7] G. Wei, K. Shirai, K. Fujiki, H. Saitoh,.T. Yamauchi, N. Tsubokawa. Carbon 42 (2004) 1923-1929.
    [8] M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M.S. Dresselhaus. Carbon 39 (2001) 1287-1297
    [10] T. Koyama, M. Endo. Jpn. J. Appl. Phys. 3 (1974) 1175-1176.
    [11] T. Koyama , M. Endo, Jpn. J. Appl. Phys. 13 (1974) 1933-1939.
    [12] A. Oberlin, M. Endo, J. Cryst. Growth. 32 (1976) 335-349.
    [13] J.S. Speck, M. Endo, M.S. Dresselhaus. J. Cryst. Growth. 94 (1989) 834-848.
    [14] G.G. Tibbetts. Appl. Phys. Lett. 42 (1983) 666-668.
    [15] F. Benissad, P. Gadelle, M. Coulon, L. Bonnetain. Carbon 26 (1988), 61-69.
    [16] G.G. Tibbetts, D.W. Gorkiewicz, R.L. Alig. Carbon 31 (1993) 809-815.
    [17] M. Ishioka, T. Okada, K. Matsubara. Carbon 30 (1992). 865-868.
    [18] S. Wang, Z.H. Chen, W.J. Ma, Q.S. Ma. Ceram. Int. 32 (2006) 291-295.
    [19] J.C. Chen, I.R. Harrison. Carbon 40 (2002) 25-45
    [20] I. Martin-Gullon, R. Andrewsb, M. Jagtoyenb, F. Derbyshire. Fuel 80 (2001) 969-977.
    [21] E. Fitzer. Carbon 27 (1989) 621-645.
    [22] K. Christ, K.J. Huttinger. Carbon 31(1993)731-750.
    [23] V. Liedtice, K. J. Hottinger. Carbon 34 (1996) 1067-1079.
    [24] J. Gerard Lavin. Carbon 30 (1992) 351-357.
    [25] Q.L. Wu, D. Pan. J. Appl. Polym. Sci. 90 (2003) 754-758.
    [26] Y. C. Chiang, C.Y. Lee, H.C. Lee. Mater. Chem. Phys. 101 (2007) 199-210.
    [27] F. L. Zeng , D. Pan. Cellulose 15 (2008) 91-99.
    [28] P. Delhaes, Graphite and precursors. Gordon and Breach, 2001
    [29] http://www.substech.com/dokuwiki/doku.php?id=graphite
    [30] R.H. Tellingy, M.I. Heggie. Philos. Mag. Lett. 83 (2003) 411-421
    [31] M. Vittori Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvani, L. Pilloni. Scr. Mater. 55 (2006) 1047-1050.
    [32] J. P. Rabe, s. Buchholz. Phys. Rev. Lett. 66 (1991) 2096-2099.
    [33] W. Lin, R.W. Zhang, C.P. Wong. J. Electron. Mater. 39 (2010) 268-272
    [34] F.C. Marques, R.G. Lacerda, A. Champi, V. Stolojan, D.C. Cox, S.R.P. Silva. Appl. Phys. Lett. 83 (2003) 3099-3101
    [35] T.A. Edison. U.S. Patent 223 898 (1879)
    [36] T.A. Edison. U.K. Patent 4576 (1879)
    [37] 進藤昭男:大阪工業技術試験所報告 317 (1961) 1-52.
    [38] H. Ono, A. Oya. Carbon 44 (2006) 682-686
    [39] E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano, A. Oya. Carbon 40 (2002) 617-636.
    [40] S. Iijima. Nature 354 (1991) 56-58.
    [41] S. Iijima, T. Ichihashi. Nature 363 (1993) 603-605.
    [42] C.A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P. C. Eklund. Chem. Phys. Lett. 319 (2000) 460-464.
    [43] B.S. Files, B.M. Mayeaux. Adv. Mater. Process 156 (1999) 47.
    [44] H. Dai, Surf. Sci. 500 (2002) 218-241.
    [45] D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, R. S. Ruoff. Appl. Mech. Rev. 55 (2002) 495-533.
    [46] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matushita, K. Miyashita, M. S. Dresselhaus. Carbon 39 (2001) 1287-1287.
    [47] P. Arias, N. F. Ferreyra, G. A. Rivas, S. Bollo. J. Electroanal. Chem. 634 (2009) 123-126.
    [48] S. Timur, U. Anik, D. Odaci , L. Gorton. Electrochem. Commun. 9 (2007) 1810-1815.
    [49] W. Knapp, D. Schleußner. Appl. Surf. Sci. 251 (2005) 164-169
    [50] H.S. Uh, S.M. Lee, P.G. Jeon, B.H. Kwak, S.S. Park, S.J. Kwon, E.S. Cho, S.W. Ko, J.D. Lee, C.G. Lee. Thin Solid Films 462–463 (2004) 19- 23.
    [51] S. Lee, W. B. Im, J. H. Kang, D. Y. Jeon. J.Vac. Sci. Technol. B 23 (2005) 745-748.
    [52] A.N. Jiang, S. Gao, X.L. Wei, X.L. Liang, Q. Chen. J. Phys. Chem. C 112 (2008) 15631-15636.
    [53] M.H. Zhao, V. Sharma, H.Y. Wei, R.R. Birge, J.A. Stuart, F. Papadimitrakopoulos, B.D. Huey. Nanotechnology 19 (2008) 235704
    [54] S.J. Zhang, H.M. Feng, J.P. Wang, H.Q. Yu. J. Colloid Interface Sci. 321 (2008) 96-102.
    [55] S.J. Zhang, H.Q. Yu, H.M. Feng. Carbon 44 (2006) 2059-2068.
    [56] H. Rong , Z.Y. Ryu, J.T. Zheng, Y.L. Zhang. Carbon 40 (2002) 2291-2300
    [57] H.M. Feng, S.J. Zhang, Y.Z. Chen, Y.W. Ding, H.Q. Yu, Michael H.W. Lam.Ind. Eng. Chem. Res. 48 (2009) 3398-3402.
    [58] Z.Y. Ryu, JT Zheng, M.Z. Wang. Carbon 36 (1998) 427-432.
    [59] A. Gupta, I.R. Hrrison. Carbon 34 (1996) 1427-1445.
    [60] P.H. Wang, K. Hong, Q.R. Zhu. J. Appl. Polym. Sci. 62 (1996) 1987-1991.
    [61] Y.R. Suhng, K. Hashizume, T. Kanekoax, S. Otani, S. Yoshimura. Synth. Met. 86 (1997) 2285-2286.
    [62] H. Konno, T. Nakaiiashi, M. Inagaki. Carbon 35 (1997) 669-674.
    [63] Y. Hishiyama, A. Yoshida, Y. Kaburagi and M. Inagaki. Carbon 30 (1992) 517-519.
    [64] S. Chen, H. Zeng. Carbon 41 (2003) 1265-1271
    [65] S.G. Fabian, M.A. Amelia, J.M.D. Tascon. Carbon 42 (2004) 1419-1426
    [66] Q.L. Wu, Z.H. Zhang, S.Y. Gu, J.H. Gong. J. Macromolecular Sci. Part A: Pure and Applied Chemistry, 43 (2006)1787-1792.
    [67] W.X. Zhang, Y.Z. Wang, C.F. Sun. J. Polym. Res. 14 (2007) 467-474.
    [68] M.S.A. Rahaman, A.F. Ismail, A. Mustafa. Polym. Degrad. Stab. 92 (2007) 1421-1432.
    [69] D. Zhu, A. Koganemaru, C. Xu, Q.D. Shen, S.L. Li, M. Matsuo. J. Appl. Polym. Sci. 87 (2003) 2063-2073.
    [70] M. Jing, C.G. Wang, Q. Wang, Y.J. Bai, B. Zhu. Polym. Degrad. Stab. 92 (2007) 1737-1742.
    [71] H.M. Hathorne, C. Baker, R.H. Bentall, K.R. Linger.Nature 227 (1970) 946-947
    [72] Y.Z. Song, G.T. Zhai, J.L. Shi, Q. Guo, L. Liu. J. Mater. Sci. 42 (2007) 9498-9500.
    [73] K. Naito, J.M. Yang , Y. Xu, Y. Kagawa. Carbon 48 (2010) 1849-1857.
    [74] K. Naito, J.M. Yang , Y. Xu, Y. Kagawa. Appl. Phys. Lett. 92 (2008) 231912.
    [75] O.Y. Qin, L. Cheng, H.J. Wang, K. Li. Polym. Degrad. Stab. 93 (2008) 1415-1421
    [76] S.H. Bahrami, P. Bajaj, K. Sen. J. Appl. Polym. Sci. 89 (2003) 1825-1837.
    [77] P. Bajaj, T.V. Screekumar, K. Sen. J. Appl. Polym. Sci. 86 (2002) 773-787.
    [78] J.J. Liu, H.Y. Ge, C.G. Wang. J. Appl. Polym. Sci. 102 (2006) 2175-2179.
    [79] R. Devasia, C.P. Reghunadhan Nair, R. Sadhana, N.S. Babu, K.N. Ninan. J. Appl. Polym. Sci. 100 (2006) 3055-3062.
    [80] Q. Ouyang, L. Cheng, H.J. Wang, Y.H. Sun. Acta. Chim. Sin. 65 (2007) 2941-2946.
    [81] H.Y. Ge, H.S. Liu, J. Chen, C. Wang. J. Appl. Polym. Sci. 108 (2008) 947-952.
    [82] P. Bajaj, T. V. Sreekumar, K. Sen. J. Appl. Polym. Sci. 79 (2001) 1640-1652.
    [83] W.X. Zhang, Y.Z.Wang, C.F. Sun. J. Polym. Res. 14 (2007) 467-474.
    [84] M.S.A. Rahaman, A.F. Ismail, A. Mustafa. Polym. Degrad.Stab. 92 (2007) 1421-1432.
    [85] D. Zhu, A. Koganemaru, C. Xu, Q.D. Shen, S.L. Li, M.J. Matsuo Appl. Polym. Sci. 87 (2003) 2063-2073.
    [86] M. Jing, C.G. Wang, Q. Wang, Y.J. Bai, B. Zhu. Polym. Degrad. Stab. 92 (2007) 1737-1742.
    [87] M. Endo, Y.J. Kim. T. Chinol, O. Shinya, Y. Matsuzawa, H. Suezaki, K. Tantrakarn, M.S. Dresselhaus Appl. Phys. A 82 (2006) 559-565
    [88] C.S. Zhang, Q.Q. Ni, S.Y. Fu, K. Kurashiki. Comp. Sci. Technol. 67 (2007) 2973-2980
    [89] I. Yamanaka, T. Hashimoto, R. Ichihashi, K. Otsuka. Electrochim. Acta. 53 (2008) 4824-832
    [90] I. Yamanaka, K. Komabayashi, A. Nishi, K. Otsuka. Catal. Today. 71 (2001) 189-197
    [91] http://www.sdk.co.jp/html/rd/monthly_sprout/0303.html
    [92] http://www.sdk.co.jp/aa/news/2001/aanw_01_0059.html
    [93] S.R. Dhakate, R.B. Mathur, T.L. Dhami. J. Mater. Sci. 41 (2006) 4123-4131
    [94] M.S. Wu, J.T. Lee, P.C. Chiang, J.C. Lin. J. Mate.r Sci. 42 (2007) 259-265
    [95] http://www.sdk.co.jp/products/46/80.html
    [96] J. H. Kim, H.S. Ganapathy, S.S. Hong, Y.S. Gal, K.T. Lim. J. Supercritical Fluids 47 (2008) 103-107.
    [97] M.J. Meziani, P. Pathak, W. Wang, T. Desai, A. Patil, Y.P. Sun. Ind. Eng. Chem. Res. 44 (2005) 4594-4598.
    [98] E. Reverchon, R. Adami. J. Supercritical Fluids 37 (2006) 1-22
    [99] J. Xie, P.K. Sharma, V.V. Varadan, V.K. Varadan, B.K. Pradhan, S. Eser. Mater. Chem.Phys. 76 (2002) 217-223
    [100] T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J.J. Hu, V.S. Bhadram, C. Narayana, T.S. Fisher. ACS Appl. Mater. Interfaces 2 (2010) 644-648.
    [101] B.Q. Wei, R. Vajtai, P.M. Ajayan. Carbon 41 (2003) 179-198.
    [102] G.B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y.F. Shi,H.J. Quan. Carbon 42 (2004) 635-640.
    [103] K.J. Lee, J.H. Oh, Y. Kim, J. Jang, Adv. Mater. 18 (2006) 2216-2219.
    [104] S. Nair, P. Naredi, S. H. Kim. J. Phys. Chem. B 109 (2005) 12491-12497.
    [105] L. Liu, N.Q. Jia, Q. Zhou, M. M. Yan, Z.Y. Jiang. Mater. Sci. Eng. C 27 (2007) 57-60.
    [106] H. Ono, A. Oya. Carbon 41 (2003) 1443-1450.
    [107] K. Fukuyama , Y. Kasahara , N. Kasahara , A. Oya , K. Nishikawaa Carbon 39 (2001) 287-324.
    [108] D. Hulicova, K. Hosoi, S.I. Kuroda , A. Oya. Carbon 43 (2005) 1246-1253.
    [109] Eliton S. Medeiros, Gregory M. Glenn, Artur P. Klamczynski, William J. Orts, Luiz H.C. Mattoso. J. Appl. Polym. Sci. 113 (2009) 2322–2330.
    [110] S. Borkar, B. Gu, M. Dirmyer, R. Delicado, A. Sen, B. R. Jackson, J. V. Badding. Polymer 47 (2006) 8337-8343
    [111] Christopher J. Ellison, Alhad Phatak, David W. Giles, Christopher W. Macosko, Frank S. Bates. Polymer 48 (2007) 3306-3316
    [112] M. Antunes, V. Realinho, E. Solorzano, M.A. Rodriguez-Perez, J.A. de Saja , J.I. Velasco1. Defect and Diffusion Forum 297-301 (2010) 996-1001.
    [113] S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi. Carbon 48 (2010) 3575–3578.
    [114] R. Kessick, G. Tepper. Appl. Phys. Lett. 83(2003) 557-559.
    [115] K. Ohgo, C. Zhao, M. Kobayashi, T. Asakura. Polymer 44 (2003) 841-846.
    [116] P. Gupta, G. L. Wilkes. Polymer 44 (2003) 6353-6359.
    [117] B. Ding, H.Y. KIM, C.L. Shao. J. Polym. Sci. Part B 40 (2002) 1261-1268.
    [118] M.Shin, G. Rutledge, M.P. Brenner. Phys. Fluids, 13( 2001) 2201-2220.
    [119] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff. Adv. Mater. 13(2001) 70-72.
    [120] Formhals A. U.S. Patent 1,975,504, 1934.
    [121] Y. Wang, S. Serrano, J. J. Santiago-Aviles. J. Mater. Sci. Lett. 21( 2002) 1055-1057
    [122] Q. Zhao, Y. Xin, Z. Huang, S. Liu, C. Yang, Y.F. Li. Polymer 48 (2007) 4311-4315.
    [123] N. Sharma, G. H. Jaffari, S. I. Shah, D. J. Pochan. Nanotechnology 21 (2010) 085707.
    [124] T. Song, Y.Z. Zhang, T.J. Zhou. J. Magn. Magn. Mater. 303 (2006) e286–e289
    [125] J.C. Di, H.Y. Chen, X.F. Wang, Y. Zhao, L. Jiang, J. Yu, R. Xu. Chem. Mater. 20 (2008) 3543-3545.
    [126] D.W. Han, A. J. Steckl. Langmuir 25 (2009) 9454-9462.
    [127] L.L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang. J. Biomed. Mater. Res. Part A (2009) 563-574.
    [128] M.Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, P. I. Lelkes. Biomaterials 27 (2006) 2705-2715.
    [129] W. Shi, W. Lu, L. Jiang. J. Colloid. Interface. Sci. 340 (2009) 291-297
    [130] X.F. Lu, Y.Y. Zhao, C. Wang. Adv. Mater. 17 (2005) 2485-2488.
    [131] E.J. Ra, K.H. An, K.K. Kim, S.Y. Jeong, Y.H. Lee. Chem. Phys. Lett. 413 (2005) 188-193.
    [132] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko. Carbon 44 (2006)1624-1652.
    [133] T. Kashiwagi, J. Fagan, J.F. Douglas, K. Yamamoto, A.N. Heckert,
    S.D. Leigh. Polymer 48 (2007) 4855-4866.
    [134] K. H. Wong, M. Z.Allmang, J. L. Hutter, S. Hrapovic, J.H.T. Luong, W.K. Wan. Carbon 47 (2009) 2571-2578.
    [135] Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen,A. L. Yarin, E. Zussman. Langmuir 19(2003) 7012-7020.
    [136] B. Z. Tang, H. Xu. Macromolecules 32 (1999) 2569.
    [137] D.F. Wu, T.J. Shi, T. Yang, Y.R. Sun, L.F. Zhai, W.D. Zhou, M. Zhang, J. Zhang. Eur. Polym. J. 47 (2011) 284-293.
    [138] Y. Liu, J. Li, Z, J. Pan. J. Polym. Res.(2011) 1-6.
    [139] A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, X. Du. Composites Sci. Tech. 70 (2010) 1401–1409.
    [140] J.S. Jeong, S.Y. Jeon, T.Y. Lee. Diamond Relat Mater. 15 (2006) 1839-1843.
    [141] S.C. Kang, J. S. Im, S.H. Lee, T.S. Bae, Y.S. Lee. Colloids Surf., A (2011) in press.
    [142] J. Gou. Polym. Int. 55 (2006) 1283-1288.
    [143] J. L. Bahr, J.P. Yang, D.V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour. J. Am. Chem. Soc. 123 (2001) 6536-6542.
    [144] U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, S. H. Jhang. J. Am. Chem. Soc. 127 (2005) 5125-5131.
    [145] N. P. Zschoerper, V. Katzenmaier, U. Vohrer, M. Haupt, C. Oehr, T. Hirth. Carbon 47 (2009) 2174-2185.
    [146] B. Kakade, R. Mehta, A. Durge, S. Kulkarni, V. Pillai. Nano. Lett. 8 (2008) 2693-2696.
    [147] X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar. J. Phys. Chem. B 108 (2004) 16435-16440.
    [148] Li-Feng Cui, Yuan Yang, Ching-Mei Hsu, Yi Cui. Nano Lett. 9 (2009) 3370-3374.
    [149] L. F. Cui, L. Hu, J. W. Choi, Y. Cui. ACS Nano 4 (2010) 3671–3678.
    [150] L. Hu, H. Wu, Y. Cui. Appl. Phys. Lett. 96 (2010) 183502.
    [151] S.W. Oh, S.H. Park, Y.K. Sun, J. Power. Sources. 161 (2006) 1314-1318.
    [152] Y.F. Su, Y.C. Weng, T.C. Chou, J. Electrochemical Soc. 155 (2008) 23-29.
    [153] S.W. Yang, L. Gao, J. Am. Ceram. Soc. 88 (2005) 968-970.
    [154] B.H. Kim, J.Y. Lee, Y.H. Choa, M. Higuchi, N. Mizutani, Sci. Eng. B: Solid-State Mater. Adv. Tech. 107 (2004) 289-294.
    [155] T.N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, J. Photochem. Photobiol. A Chem. 164 (2004) 187-197.
    [156] Z.Y. Yuan, B.L. Su. Colloids. Surf. A 241 (2004) 173-183.
    [157] X.W. Wang, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J. Phys. Chem. C. 112 (2008) 5384-5389.
    [158] H.S. Kim, M.R. Kim, H.J. Kang, J. K. Lee, Mol. Cryst. Liq. Cryst. 464 (2007) 65-71.
    [159] Y. L. Liu, W.H. Chen. Macromolecules 40 (2007) 8881–8886.
    [160] X.W. Pei, Y.Q. Xia, W.M. Liu, B. Yu, J.C. Hao, J. Polym. Sci. Part A: Polym. Chem. 46 (2008) 7225-7237.
    [161] G. Mountrichas, S. Pispas, N.Tagmatarchis. Mater. Sci. Eng. B 152 (2008) 40-47.
    [162] H. Kong, P. Luo, C. Gao, D.Y. Yan. Polymer 46 (2005) 2472-2485.
    [163] A.M. Shanmugharaj, J.H. Bae, R.R. Nayak, S.H.Ryu. J. Polym. Sci. Part A: Polym. Chem. 45 (2007) 460-470.
    [164] X. Wang, Z.G. Du, C. Zhang, C.J. Li, X.P.Yang, H.Q. Li, J. Polym. Sci., Part A: Polym. Chem. 46 (2008) 4857-4865.
    [165] H.X. Xu, X.B. Wang, Y.F. Zhang, S.Y. Liu. Chem. Mater. 18 (2006) 2929-2934.
    [166] W.J. Chou, C.C. Wang, C.Y. Chen, J. Inorg. Organomet. Polym. Mater. 19 (2009) 234-242.
    [167] C.H. Tseng, C.Y. Chen, Nanotechnology 19 (2008) 0356061-8.
    [168] C.H. Tseng, C.Y. Chen, C.C.Wang. Nanotechnology 17 (2006) 5602-5612.
    [169] C.H. Tseng, C.Y. Chen, C.C.Wang. J. Phys. Chem. B 110 (2006) 4020-4029.
    [170] W.J. Chou, C.C.Wang , C.Y. Chen, Compos. Sci. Technol. 68 (2008) 2208-2213.
    [171] I.H. Chen, C.C.Wang , C.Y. Chen. Plasma Process. Polym. 7 (2010) 59-63.
    [172] R.E. Rosensweig. Ferrohydrodynamics. Cambridge: Cambridge University Press (1985) 50-53.
    [173] R. Tadmor, R.E. Rosensweig, J. Frey, J. Klein. Langmuir 16 (2000) 9117-9120.
    [174] X. Liu, M. D. Kaminski, Y. Guan, H. Chen, H. Liu, A. J. Rosengart. J. Magn. Magn. Mater. 306 (2006) 248-253.
    [175] C.R. Lin, C.C. Wang, I.H. Chen. J. Appl. Phy. 99 (2006) 1-3
    [176] C.R. Lin, C.C. Wang, I.H. Chen. J. Magn. Magn. Mater. 304 (2006) e451-e453.
    [177] C.R. Lin, C.C. Wang, I.H. Chen. J. Magn. Magn. Mater. 304 (2006) e34-e36.
    [178] I.H. Chen, C.C. Wang, C.Y. Chen. Scr. Mater. 58 (2008) 37-40.
    [179] K. Yasukawa, M. Nishimura. J. Am. Ceram. Soc. 90 (2007) 1107-1114
    [180] B.D. Cullity, Introduction to Magnetic Materials, Addison Wesley, New York, 1972, p. 129.
    [181] G. Chao, Z.J. Yi, K. Hao, L.D.W. Raymond, F.A.A. Steve, G.Y. Chen, H. Qian, H. Achim, S.R.P. Silva, H. Simon, F. Peter, W.K. Harold , R.M.W. David. J. Phys. Chem. B 109 (2005) 11925.
    [182] A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus , M.S. Dresselhaus New J. Phys. 5 (2003) 139.
    [183] F.C. Kung, M.C. Yang. Polym. Adv. Technol. 17 (2006) 419-425.
    [184] I. Francesca, T. Sonia, P. Francesco, C. Giuseppe, G.S. Umile, M. Rita, P. Nevio. Bioscience 5 (2005) 1049-1056.
    [185] J.M. Deitzel , J.D. Kleinmeyer, J.K. Hirvonen, N.C. Beck Tan Polymer 42(2001) 8163-8170.
    [186] J.M. Deitzel, W. Kosik, S.H. McKnight, N.C. Beck Tan, J.M. DeSimone, S. Crette. Polymer 43 (2002) 1025-1029.
    [187] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman. Polymer 43 (2002) 3303-3309.
    [188] R.V.N. Krishnappa, K. Desai, C. Sung. J. Mater. Sci. 38 (2003) 2357-2365.
    [189] P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes. Polymer 46 (2005) 4799-4810.
    [190] A. Varesano, A. Aluigi, C. Vineis, C. Tonin. J. Polym. Sci. Part B: Polym. Phys. 46 (2008) 1193-1201.
    [191] C. Wang, H.S. Chien, C.H. Hsu, Y.C. Wang, C.T. Wang, H.A. Lu. Macromolecules 40 (2007) 7973-7983.
    [192] S. Dalton, F. Heatley, P.M. Budd. Polymer 40 (1999) 5531–5543.
    [193] J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol. Polym. Int. 55 (2006) 825-833.
    [194] H. Kikada, K. Tashiro. Polym. J. 29(1997) 557-562.
    [195] B.S. Jung. J. Membr. Sci. 229 (2004)129-136.
    [196] R.I.R. Blyth, H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard. Appl. Surf. Sci. 167 (2000) 99-106.
    [197] J. Garcia-Otero, M. Porto, J. Rivas, A. Bunde. Phys. Rev. Lett. 84 (2000)167-170.
    [198] S.F. Yan, J.B. Yin, E.L. Zhou. Colloids Surf. A Physicochem. Eng. Aspect 287 (2006) 153-157.
    [199] Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman. Langmuir 19 (2003) 7012-7020.
    [200] F. Tuinstra, J.L. Koenig. J. Chem. Phys. 53 (1970) 1126-1130.
    [201] D.S. Knight, W.B. White. J. Mater. Res. 4 (1989) 385-393.
    [202] S. Prilutsky, E. Zussman, Y. Cohen. Nanotechnology 19 (2008) 165603
    [203] M. H. Al-Saleh, U. Sundararaj. Carbon 47 (2009) 1738-1746.
    [204] Z.F. Liu, G. Bai, Y. Huang, Y.F. Ma, F. Du, F.F. Li, T.Y. Guo, Y.S.Chen. Carbon 45 (2007) 821-827.
    [205] N.C. Das, Y.Y. Liu, K. Yang, W. Peng, S. Maiti, H. Wang. Polym. Eng. Sci. 49 (2009) 1627-1634.
    [206] Y.H. Huang, Y.F. Huang, C.Y. Huang, C.Y. Chen. J. Hazardous Mater. 170 (2009) 1110-1118.
    [207] I.C. McNeill. Comprehensive Polym. Sci. 6 (1989) 458-462.

    下載圖示 校內:2015-08-23公開
    校外:2015-08-23公開
    QR CODE