研究生: |
蔡博宇 Tsai, Po-Yu |
---|---|
論文名稱: |
運用流體體積耦合拉格朗日粒子法分析旋流噴嘴霧化之過程 Analysis of the Atomization Process in a Swirl Injector Using VOF to Lagrangian Method |
指導教授: |
曾建洲
Tseng, Chien-Chou |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 計算流體力學 、旋流噴嘴 、液體霧化之過程 、流體體積法耦合拉格朗日粒子法 |
外文關鍵詞: | Computational Fluid Dynamics (CFD), Swirl injector, The process of liquid atomization, VOF to Lagrangian method |
相關次數: | 點閱:49 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用OpenFOAM建立適用於不同噴嘴幾何和工作流體三維數值模型,配合多相流模型中之流體體積法(Volume of fluid,VOF)描述兩相間界面,並且考慮表面張力之作用,以及採用大渦模型(Large eddy simulation)模擬紊流流場,在計算中使用自適應網格法(Adaptive mesh refinement,AMR)加密網格得到清晰的界面和減少計算所需資源。另外將噴嘴內外的流場以尤拉 - 尤拉描述法並使用流體體積法(VOF)進行模擬,雖能準確捕捉噴嘴內外之流動情形,但在描述兩相界面時或進行後續大尺度的計算時需要耗費大量計算資源。因此本研究藉由把液相之流體體積耦合成拉格朗日粒子,並加入破裂模型來模擬噴霧二次破裂,取得噴霧中粒子參數的資訊來分析粒徑大小和分布。
由模擬結果在噴嘴不同高度截面採樣所得到切向速度和渦度分布可將噴嘴內部流場區分出邊界層、位勢錐和空氣柱之區域。在空氣柱區域氣體受到液體的帶動而旋轉往下噴出,而在噴嘴中心處會將外部空氣吸進噴嘴以滿足質量守恆。當液體噴出後,液膜受到渦流拉伸之影響,隨著旋轉半徑隨著越往下游增加導致沿中心軸轉動趨勢逐漸減緩,最後液膜將漸漸變薄且不再旋轉僅朝徑向方向前進。觀察模擬噴霧中存在直向以及橫向交錯排列之韌條,直向韌條為液膜上受橫向傳遞不穩定性影響所形成,而橫向韌條則為受直向傳遞不穩定性影響所形成。針對模擬噴霧二次破裂結果發現使用Pilch-Erdman模型及Reitz-Diwakar模型噴霧D32之值相近,主要原由為模擬中噴霧粒子之Oh數皆小於液滴受黏性影響之標準。
In this study, we use OpenFOAM to create a three-dimensional numerical model applicable to different injector geometries and working fluids. The model incorporate the Volume of Fluid method for multiphase flow, considering surface tension effects. Large Eddy Simulation captures turbulent flow, while adaptive mesh refinement (AMR) refines grids. By coupling VOF with Lagrangian particles, we simulate secondary breakup in droplets through Pilch-Erdman and Reitz-Diwakar breakup model. The calculation results show the same trend as the experimentally measured spray angle and Sauter mean diameter.
As the liquid is ejected, the liquid film is stretched by vortices. The rotational radius increases downstream, leading to a gradual decrease in rotational trend along the central axis. Eventually, the liquid film thins out and ceases to rotate, advancing only in the radial direction. The simulated spray exhibits longitudinal and transverse interlaced ligaments. The longitudinal ligaments are formed due to the influence of transverse instability on the liquid film, while the transverse ligaments result from the influence of longitudinal instability. Regarding the secondary breakup of the spray, it is found that using the Pilch-Erdman model and the Reitz-Diwakar model yields similar values for the spray D32.This similarity is primarily because the Ohnesorge number of the spray particles in the simulation is below the threshold where droplet viscosity effects become significant.
[1] I. Makhnenko, E. R. Alonzi, S. A. Fredericks, C. M. Colby, and C. S. Dutcher, "A review of liquid sheet breakup: Perspectives from agricultural sprays," Journal of Aerosol Science, vol. 157, Sep 2021, Art no. 105805, doi: 10.1016/j.jaerosci.2021.105805.
[2] Z. T. Kang, Z. G. Wang, Q. L. Li, and P. Cheng, "Review on pressure swirl injector in liquid rocket engine," Acta Astronautica, vol. 145, pp. 174-198, Apr 2018, doi: 10.1016/j.actaastro.2017.12.038.
[3] J. Jedelsky, M. Maly, N. P. del Corral, G. Wigley, L. Janackova, and M. Jicha, "Air-liquid interactions in a pressure-swirl spray," International Journal of Heat and Mass Transfer, vol. 121, pp. 788-804, Jun 2018, doi: 10.1016/j.ijheatmasstransfer.2018.01.003.
[4] G. Amini, "Liquid flow in a simplex swirl nozzle," International Journal of Multiphase Flow, vol. 79, pp. 225-235, Mar 2016, doi: 10.1016/j.ijmultiphaseflow.2015.09.004.
[5] S. K. Dash, M. R. Halder, M. Peric, and S. K. Som, "Formation of air core in nozzles with tangential entry," Journal of Fluids Engineering-Transactions of the Asme, vol. 123, no. 4, pp. 829-835, Dec 2001, doi: 10.1115/1.1412845.
[6] K. Ghorbanian, M. Ashjaee, M. Soltani, M. Mesbahi, and M. Morad, "Experimental flow visualization of single swirl spray pattern at various pressure drops," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003, p. 4758.
[7] S. Som and G. Biswas, "Initiation of air core in a swirl nozzle using time-independent power-law fluids," Acta mechanica, vol. 51, no. 3, pp. 179-197, 1984.
[8] S. Moon, E. Abo-Serie, and C. Bae, "Air flow and pressure inside a pressure-swirl spray and their effects on spray development," Experimental Thermal and Fluid Science, vol. 33, no. 2, pp. 222-231, Jan 2009, doi: 10.1016/j.expthermflusci.2008.08.005.
[9] E. J. Lee, S. Y. Oh, H. Y. Kim, S. C. James, and S. S. Yoon, "Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers," Experimental Thermal and Fluid Science, vol. 34, no. 8, pp. 1475-1483, Nov 2010, doi: 10.1016/j.expthermflusci.2010.07.010.
[10] M. R. Halder, S. K. Dash, and S. K. Som, "Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size," Experimental Thermal and Fluid Science, vol. 26, no. 8, pp. 871-878, Oct 2002, Art no. Pii s0894-1777(02)00153-x, doi: 10.1016/s0894-1777(02)00153-x.
[11] S. Kim, D. Kim, Y. Yoon, and T. Khil, "Effect of geometry on the liquid film thickness and formation of air core in a swirl injector," in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007, p. 5460.
[12] U. Sonawane and A. K. Agarwal, "Spray Breakup Modelling for Internal Combustion Engines," in Engine Modeling and Simulation: Springer, 2021, pp. 57-85.
[13] B. H. Bang, C. S. Ahn, S. S. Yoon, and A. L. Yarin, "Breakup of swirling films issued from a pressure-swirl atomizer," Fuel, vol. 332, Jan 2023, Art no. 125847, doi: 10.1016/j.fuel.2022.125847.
[14] T. B. Gatski and J. P. Bonnet, Compressibility, Turbulence and High-Speed Flow (Compressibility, Turbulence and High-Speed Flow). 2009, pp. 1-283.
[15] C. Patrascu and C. Balan, "Dispersion relations, capillary waves, and the Rayleigh-Plateau instability," INCAS Bulletin, vol. 14, no. 2, pp. 75-85, 2022.
[16] W. V. Ohnesorge, "Die bildung von tropfen an düsen und die auflösung flüssiger strahlen," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 16, no. 6, pp. 355-358, 1936.
[17] A. H. Lefebvre and V. G. McDonell, Atomization and sprays. CRC press, 2017.
[18] C. Bekdemir, L. Somers, and L. De Goey, "Numerical modeling of diesel spray formation and combustion," Eindhoven University of Technology, 2008.
[19] M. Pilch and C. A. Erdman, "USE OF BREAKUP TIME DATA AND VELOCITY HISTORY DATA TO PREDICT THE MAXIMUM SIZE OF STABLE FRAGMENTS FOR ACCELERATION-INDUCED BREAKUP OF A LIQUID-DROP," International Journal of Multiphase Flow, vol. 13, no. 6, pp. 741-757, Nov-Dec 1987, doi: 10.1016/0301-9322(87)90063-2.
[20] C. Storm and E. Joos, "Comparison of secondary breakup models for droplet-laden compressor flows," International Journal of Multiphase Flow, vol. 116, pp. 125-136, Jul 2019, doi: 10.1016/j.ijmultiphaseflow.2019.04.005.
[21] G. M. Faeth, L. P. Hsiang, and P. K. Wu, "Structure and breakup properties of sprays," International Journal of Multiphase Flow, vol. 21, pp. 99-127, Dec 1995, doi: 10.1016/0301-9322(95)00059-7.
[22] J.-W. Ding, G.-X. Li, Y.-S. Yu, and H.-M. Li, "Numerical investigation on primary atomization mechanism of hollow cone swirling sprays," International Journal of Rotating Machinery, vol. 2016, no. 1, p. 1201497, 2016.
[23] V. Natarajan, U. Unnikrishnan, W. S. Hwang, J. Y. Choi, and V. Yang, "Numerical study of two-phase flow dynamics and atomization in an open-type liquid swirl injector," International Journal of Multiphase Flow, vol. 143, Oct 2021, Art no. 103702, doi: 10.1016/j.ijmultiphaseflow.2021.103702.
[24] E. Laurila, J. Roenby, V. Maakala, P. Peltonen, H. Kahila, and V. Vuorinen, "Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation," International Journal of Multiphase Flow, vol. 113, pp. 371-388, Apr 2019, doi: 10.1016/j.ijmultiphaseflow.2018.10.008.
[25] L. X. Shen, G. Y. Fang, S. Z. Wang, F. Xing, and S. N. Chan, "Numerical study of the secondary atomization characteristics and droplet distribution of pressure swirl atomizers," Fuel, vol. 324, Sep 2022, Art no. 124643, doi: 10.1016/j.fuel.2022.124643.
[26] S. Braun et al., "Numerical prediction of air-assisted primary atomization using Smoothed Particle Hydrodynamics," International Journal of Multiphase Flow, vol. 114, pp. 303-315, May 2019, doi: 10.1016/j.ijmultiphaseflow.2019.03.008.
[27] G. Tomar, D. Fuster, S. Zaleski, and S. Popinet, "Multiscale simulations of primary atomization," Computers & Fluids, vol. 39, no. 10, pp. 1864-1874, Dec 2010, doi: 10.1016/j.compfluid.2010.06.018.
[28] M. Yousefifard, P. Ghadimi, and M. Mirsalim, "Numerical simulation of biodiesel spray under ultra-high injection pressure using OpenFOAM," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, no. 2, pp. 737-746, Mar 2015, doi: 10.1007/s40430-014-0199-y.
[29] H. M. Yu, Y. C. Jin, W. M. Cheng, X. H. Yang, X. L. Peng, and Y. Xie, "Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle," Powder Technology, vol. 379, pp. 127-143, Feb 2021, doi: 10.1016/j.powtec.2020.10.053.
[30] D. D. Sciortino, F. Bonatesta, E. Hopkins, D. Bell, and M. Cary, "A systematic approach to calibrate spray and break-up models for the simulation of high-pressure fuel injections," International Journal of Engine Research, vol. 24, no. 2, pp. 437-455, Feb 2023, Art no. 14680874211050787, doi: 10.1177/14680874211050787.
[31] Y. B. Sun, A. M. Alkhedhair, Z. Q. Guan, and K. Hooman, "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, vol. 160, pp. 678-692, Oct 2018, doi: 10.1016/j.energy.2018.07.060.
[32] M. Di Martino, D. Ahirwal, and P. L. Maffettone, "Computational fluid dynamics characterization of the hollow-cone atomization: Newtonian and non-Newtonian spray comparison," Physics of Fluids, vol. 34, no. 9, Sep 2022, Art no. 093318, doi: 10.1063/5.0104658.
[33] M. Heinrich and R. Schwarze, "3D-coupling of Volume-of-Fluid and Lagrangian particle tracking for spray atomization simulation in OpenFOAM," Softwarex, vol. 11, Jan-Jun 2020, Art no. 100483, doi: 10.1016/j.softx.2020.100483.
[34] J. U. Brackbill, D. B. Kothe, and C. Zemach, "A continuum method for modeling surface tension," Journal of computational physics, vol. 100, no. 2, pp. 335-354, 1992.
[35] C. Galbiati, M. Ertl, S. Tonini, G. E. Cossali, and B. Weigand, "DNS investigation of the primary breakup in a conical swirled jet," in High Performance Computing in Science and Engineering´ 15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015, 2016: Springer, pp. 333-347.
[36] A. Yoshizawa, "STATISTICAL-THEORY FOR COMPRESSIBLE TURBULENT SHEAR FLOWS, WITH THE APPLICATION TO SUBGRID MODELING," Physics of Fluids, vol. 29, no. 7, pp. 2152-2164, Jul 1986, doi: 10.1063/1.865552.
[37] A. Spitzenberger, S. Neumann, M. Heinrich, and R. Schwarze, "Particle detection in VOF-simulations with OpenFOAM," Softwarex, vol. 11, Jan-Jun 2020, Art no. 100382, doi: 10.1016/j.softx.2019.100382.
[38] Z. W. Huang, M. J. Zhao, Y. Xu, G. Z. Li, and H. W. Zhang, "Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications," Fuel, vol. 286, Feb 2021, Art no. 119402, doi: 10.1016/j.fuel.2020.119402.
[39] M. W. Lee, J. J. Park, M. M. Farid, and S. S. Yoon, "Comparison and correction of the drop breakup models for stochastic dilute spray flow," Applied Mathematical Modelling, vol. 36, no. 9, pp. 4512-4520, Sep 2012, doi: 10.1016/j.apm.2012.02.015.
[40] R. D. Reitz and R. Diwakar, "Structure of high-pressure fuel sprays," SAE transactions, pp. 492-509, 1987.
[41] K. Shimura and A. Matsuo, "Two-dimensional CFD-DEM simulation of vertical shock wave-induced dust lifting processes," Shock Waves, vol. 28, no. 6, pp. 1285-1297, Nov 2018, doi: 10.1007/s00193-018-0848-7.
[42] R. Suryaprakash and G. Tomar, "Secondary Breakup of Drops," Journal of the Indian Institute of Science, vol. 99, no. 1, pp. 77-91, Mar 2019, doi: 10.1007/s41745-018-0094-0.
[43] A. Omidvar, "Development and assessment of an improved droplet breakup model for numerical simulation of spray in a turbulent flow field," Applied Thermal Engineering, vol. 156, pp. 432-443, Jun 2019, doi: 10.1016/j.applthermaleng.2019.04.090.
[44] 蔡景堯, "500磅級煤油基雙基自燃火箭噴注單元設計與研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2022.
[45] P. B. Kowalczuk and J. Drzymala, "Physical meaning of the Sauter mean diameter of spherical particulate matter," Particulate Science and Technology, vol. 34, no. 6, pp. 645-647, 2016, doi: 10.1080/02726351.2015.1099582.