| 研究生: |
吳宗璟 Wu, Tsung-Jing |
|---|---|
| 論文名稱: |
有機磁性半導體薄膜之特性研究 Fundamental characteristics of magnetic organic semiconductor thin film |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 拉曼成像光譜 、磁力顯微鏡 、五環素 、有機磁性半導體 |
| 外文關鍵詞: | Raman mapping, conductive atomic force microscopy, magnetic properties of organic semiconductor |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用分子束磊晶系統蒸鍍五環素(pentacene),並利用電子束系統(E-beam Gun)同時摻雜磁性原子,磁性原子選用鎳(Nickel, Ni)與鈷(Cobalt, Co),分別製作有機磁性半導體薄膜。分別來探討以薄膜相的Pentacene的2p軌域與磁性原子的3d軌域耦合,以Pentacene作為磁性傳遞的橋樑,在常溫環境中即可觀察到有機磁性薄膜具有殘磁現象,此為本實驗室所提出之磁性原子與有機半導體電子自旋耦合的模型。
本實驗的第一部份分析以摻雜Ni之Pentacene薄膜,Pentacene與Ni的分子含量比為1:1.43。利用二維拉曼成像光譜儀(Raman mapping)分析此薄膜可以發現摻雜Ni以及外加磁場會造成Pentacene分子耦合程度提高,使得Pentacene分子側邊的C-H振動的拉曼訊號產生紅移現象。比較Pentacene側邊的C-H振動與內部的苯環振動之拉曼訊號強度比值,發現強度比值下降可說明Ni與Pentacene之間的耦合提高。最後,利用導電式原子力顯微鏡(C-AFM)在晶粒邊界處所得到之電流訊號被放大,發現未成長於Pentacene分子間的Ni將堆積於晶粒邊界處。
本實驗的第二部份分析以摻雜Co之Pentacene薄膜,並摻雜不同濃度的Co。利用磁力顯微鏡(MFM)分析此有機磁性薄膜,在常溫環境中仍有殘磁的存在。透過給予基板電壓在有機磁性薄膜上累積載子,載子的自旋磁矩受到Co的自旋磁矩所影響,會在薄膜表面上產生大量磁矩,導致MFM會出現磁訊號被放大的現象。隨著電壓的改變會直接影響載子數量的變化,對樣品不會有累積磁訊號的功能,所以加大電壓後再回復到相同電壓下所得磁相位角方均根值約略相同。
隨著摻雜的Co濃度增加,在XRD分析可以發現Co會破壞Pentacene長距離成長,導致第二階繞射峰逐漸下降。AFM分析中則可發現隨著濃度提高後,Co會影響Pentacene分子的成長,表面粗糙度會提升。最後,在超導量子干涉儀的分析當中,在300K的環境中可以量測到矯頑力(coercivity)及殘磁(remanent magnetic)。隨著pentacene與Co的分子含量比提高,可將矯頑力、殘磁提高,本實驗中Pentacene與Co的分子含量比為1:0.85,量測到最大矯頑力為412.9 Oe。
A magnetic organic semiconductor thin film composed of pentacene molecules and nickel (Ni) atoms that were co-deposited via molecular beam epitaxy was fabricated and studied. The physical properties of the intermolecular electron coupling between the 2p orbit of pentacene molecules and the 3d orbit of Ni atoms were examined via Raman mapping spectroscopy. The red-shift level of the peak at 1178 cm−1 increased with Ni doping and external magnetic field. Furthermore, the ratio of the peak intensity at 1178 cm−1 over that at 1371 cm−1 decreased with Ni doping and external magnetic field. Based on the change in Raman signal, an increment in intermolecular electron coupling was found with the overlap of the 2p orbit of pentacene molecules and the 3d orbit of Ni atoms. In addition, intermolecular electron coupling could be enhanced by external magnetic field. The distribution of Ni atoms was also studied via atomic force microscopy and conductive atomic force microscopy techniques. A comparison between pristine pentacene film and Ni-doped pentacene film showed that the current of grain boundary increased with Ni doping, which indicated that excess Ni atoms were deposited in the grain boundary. Finally, a model of magnetic transition called “magnetic transmission bridge” was proposed and used to explain the remanent magnetization of magnetic organic semiconductor thin films observed at room temperature.
1.N. Baibich et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., 61, 2472, 1988.
2.A. V. Khvalkovskiy et al., “Erratum: Basic principles of STT-MRAM cell operation in memory arrays”, J. Phys. D: Appl. Phys., 46, 074001, 2013.
3.吳德和, “磁阻式隨機存取記憶體技術的發展-現在與未來”, 物理雙月刊, 卷26, 2004。
4.S. Datta et al., “Electronic analog of the electro‐optic modulator”, Appl. Phys. Lett., 56, 665, 1990.
5.R.R. Thankalekshmi et al., “Simulation of a spin field effect transistor based on magnetic impurity–doped ZnO”, J. Appl. Phys, 111, 07D104, 2012.
6.Y. Ohno et al., “Electrical spin injection in a ferromagnetic semiconductor heterostructure”, Nature 402, 790, 1999.
7.W.F. Koehl et al., “Room temperature coherent control of defect spin qubits in silicon carbide”, Nature 479, 84, 2011.
8.H. Ohno et al., “(Ga, Mn) As: A new diluted magnetic semiconductor based on GaAs”, Appl. Phys. Lett., 69, 363-365, 1996
9.H. Ohno et al., “Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductor”, Phys. Rev. Lett., 68, 2664, 1992.
10.胡裕民, “III-V稀磁性半導體薄膜之研究與發展”, 物理雙月刊, 卷26, 2004
11.L. B. Shi et al., “Defect formation and magnetic properties of Co-doped GaN crystal and nanowire”, Physica B, 426, 45, 2013.
12.R. P. Davies et al., “Review of recent advances in transition and lanthanide metal–doped GaN and ZnO”, Chem. Eng. Commun., 195, 1030, 2009.
13.S. M. Basha et al., “Investigations on cobalt doped GaN for spintronic applications”, J. Cryst. Growth, 218, 432, 2011.
14.K. Srinivas et al., “Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors”, J. Phys. Chem. C, 113, 3543, 2009.
15.M. Cazayous et al., “Iodine insertion in pentacene thin films investigated by infrared and Raman spectroscopy”, Phys. Rev. B, 70, 081309, 2004.
16.BjÖrn Bräuer et al., “Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices”, J. Phys. Chem. B, 113, 4565, 2009.
17.S. Ren et al., “organic exciton multiferroics”, Adv. Mater. 24 , 724, 2012
18.何宗曄, “具高介電係數介電層的有機薄膜電晶體與Ni摻雜有機磁性半導體之研究”, 國立成功大學博士論文, 2013。
19.余泊學, “鎳摻雜在塊材相有機半導體中的電子自旋耦合之研究”, 國立成功大學碩士論文, 2013。
20.T. W. Kelley et al., “Ancement of magneto-optical effects in magnetic nanoparticles near gold-dielectric surfaces”, Appl. Optics, 49, No. 26, 2010.
21.R. Ruiz et al., “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B, 67 , 125406, 2003.
22.買昱椉, “五環素薄膜初期成長機制研究”, 國立成功大學博士論文, 2007。
23.H. L. Cheng et al., “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films”, Adv. Funct. Mater., 17, 3639, 2007.
24.C. C. Mattheus et al. “ Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc., 125, 6523, 2003.
25. C. C. Mattheus et al. “Polymorphism in pentacene”, Acta Crystallogr. sec. C, 57, 939, 2001.
26.H. L. Cheng et al., “Controlling Polymorphic Transformations
of Pentacene Crystal through Solvent Treatments: An Experimental and Theoretical Study”, Crystal Growth & Design, 10, 4501-4508, 2010.
27.L. F. Drummy et al., “Thickness-Driven Orthorhombic to Triclinic Phase Transformation in pentacene thin films”, Adv. Mater., 17, 903, 2005.
28.R. G. D. Valle et al., “Exploring the polymorphism of crystalline
pentacene”, Org. Electron., 5, 1, 2004
29.S. E. Fritz et al., “Structural Characterization of a Pentacene
Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence
X-ray Diffraction”, J. Am. Chem. Soc., 126, 4084, 2004
30.E. Venuti et al., “Probing pentacene polymorphs by lattice dynamics
calculations”, J. AM. Chem. Soc., 124, 2128, 2002
31.E. Resnick et al., “Quantum physics of atoms, molecules,
solids, nuclei, and particles”, John Wiley & Sons 2nd, 1985
32.R. H. Hansen et al., “Effect of atomic oxygen on polymers”, J.
Polym. Sci.: A, 3, 2205, 1965
33.J. R. Ferraro, “Introductory raman spectroscopy”, Academic Press,
2nd, 15, 2002
34.A. S. Davydo, “Theory of molecular excition”, McGraw-Hill, New
York, 21, 1971
35.T. M. K. Nedungadi, “Conical refraction in naphthalene crystal”,
Proc. Indian Acad. Sci., 14, 221, 1941
36.L. Colangeli et al., “Raman and infrared spectra of polycyclicaromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J, 396. 369, 1992
37.C. Kittel, “Introduction to Solid State Physics” 7th edition , Wiley, New York, p. 70, 1996
校內:2019-09-01公開