簡易檢索 / 詳目顯示

研究生: 陳葳
Chen, Wei
論文名稱: 震盪水柱式波浪發電機之流場分析
Simulation of An Oscillating Water Column Type Wave Energy Conversion Device
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 波浪發電Savonius葉片流體計算分析震盪水柱
外文關鍵詞: wave energy, Savonius blade, CFD, OWC
相關次數: 點閱:108下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究內容延續莫鈞維(2013)之“利用氣壓與震盪水柱轉換波浪能量方法之研究”,以該波浪發電設計的工作原理為基礎,設計一個長6米,寬2.3米的發電設備箱體,箱體內充入液體,液體因波浪起伏造成的氣壓,而在箱體左右兩側反覆流動,進而帶動箱體中間下方置放的葉片轉動而發電,該葉片選用垂直軸式的Savonius葉型。利用CFD針對該設計之葉片及箱體進行數值模擬,本研究採用ANSYS CFX計算流體力學軟體,該軟體利用有限體積法求解三維Reynolds-Average Navier-Stokes方程式,並配合SST紊流模型進行模擬,其中網格採用ICEM軟體產生自適四面體非結構性網格。研究的重點在於探討所選用的葉片在不同流量及波浪波形等的流場及輸出性能,體積流率範圍為1m3/s至12m3/s,在不同的體積流率及不同轉速範圍下進行流場模擬,逐一討論該體積流率的操作轉速及其輸出功率。波浪的形式對輸出功率也有很大的影響,文中也對其發電輸出進一步探討,做為提供未來設計者的參考。

    SUMMARY
    The purpose of this study is to continue the research of Chun-Wei Mo (2013), “The Study of Converting Wave Energy by Using Air Pressure and Oscillating Water Column”, designing a 6 m-length, 2.3 m-width container with a Savonius vertical axial turbine wave energy device. From the previous study Chun-Wei Mo researched, water was filled in the generator sink. The wave motion will cause the liquid in the generator sink to reciprocate and motivate the turbine to generate. In order to obtain the performance of the blade from simulation, CFD method was employed. The software ANSYS CFX has been used in this study which is a numerical method used to solve 3-D Navier-Stokes equations with the finite volume method. The SST turbulence model was adopted to simulate the turbulent model. The self-adjusted tetrahedral non-structural grid was constructed based on the mesh generation software, ICEM. The major work in this study is to determine the operating condition for this design and discuss the power output in different wave type. Hence, the range of the volume flow from 1 m3/s to 12 m3/s has been simulated and each case is discussed, including the power output and efficiency. To determine the operating rotational speed, the method of predicting rotational speed is proposed in the simulation.

    Key words: wave energy, Savonius blade, CFD, OWC

    INTRODUCTION
    Due to the shortage of nonrenewable energy such as petroleum and coal, development of technology related to renewable energy has accelerated recent decades. A worldwide desire to limit our dependency on fossil fuels as a means to produce power has motivated research in solar, wind and wave energy as well. Wave energy is available in a variety of forms such as marine current, tidal current, geothermal vent and waves. The most commercially viable resources studied so far are ocean current and waves. In this study, a 6 m-length, 2.3 m-width container with a Savonius vertical axial turbine physical model filled with water was set up. This device was established to be an oscillating water column and it would generate power by waves.

    NUMERICAL METHOD
    Nowadays, CFD modeling provides a good description of flow field analysis with details usually available through physical modeling. In this study, numerical simulations have been performed. The software ANSYS CFX was used in this study which is a numerical method solved 3-D Navier-Stokes equations with the finite volume method. Grid generation uses ANSYS ICEM CFD to generate the unstructured tetrahedral mesh. Additionally, a few prismatic layers were established near the tip area to increase the precision of the simulation. In order to achieve the accurate result, k-ωSST turbulence model was adopted since k-ωSST turbulence model has been widely used to analyze Savonius type turbine in previous researches.

    RESULTS and DISCUSSION
    This study is mainly aimed to analyze the output characteristics of the entire system at different volume flow rates. After the selection of the Savonius type blade, a traditional combination of a semi-cylindrical five-leaf Savonius model, flow field at 1 ~ 4m3/ s has been simulated. Based on the output characteristics and flow channel, the shape of the original blades was modified, improving the performance of the blade. To understand the physical condition of such device, and properties of the output of the modified Savonius rotor, the flow through the inlet section of the housing 1 ~ 12 m3/ s has been simulated. The results of the simulation showed the performance of the modified type blade was higher than that of the original one. In addition, the results indicated the power output is less than 30 kW at 1 ~ 5m3/ s; 30~60 kW at 6 ~ 7m3 / s and 100 ~ 300 kW at 8 ~ 12m3/ s. The value of performance efficiency is located within 0.06 to 0.08. The flow field of the whole system shows that there is a huge low pressure region with some vortex. Furthermore, this research is used to estimate the actual output performance of the wave power device based on this hydraulic turbine. As different environments caused different wave motions, this study only considered the wave period at eight seconds, and the half cycle can lead to eight tons of water flowing through the blade as physical conditions. Based on the physical conditions, 3 different types of waves were plotted to estimate a possible value of power output. The maximum volume flow rate of three different waveforms 3m3/s, 6 m3/s and 12 m3/ s, totaled to a maximum output power of 5.94 kW, 39 kW, 294.45 kW respectively. The corresponding values of the average power output during a period are 0.75 kW, 5.75 kW, and 37 kW.

    摘要 I Simulation of An Oscillating Water Column Type Wave Energy Conversion Device II SUMMARY II INTRODUCTION II NUMERICAL METHOD III RESULTS and DISCUSSION III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 波浪發電之種類 2 1-2-2 國內外波浪發電發展概況 3 1-2-3 波浪發電之常見葉片類型 16 1-3 研究動機 19 1-4 內容簡介 20 第二章 數值方法 21 2-1統御方程式 21 2-2紊流模型 23 2-3 數值方法 24 2-3-1 控制體積 26 2-3-2 壓力項與擴散項的處理 31 2-3-3 數值通量的計算 32 2-4 非交錯網格 32 2-5 矩陣解法 33 第三章 物理模型與計算環境 35 3-1 物理模型與參數定義 35 3-2 流道計算區域設定 38 3-3 流道計算環境與計算條件設定 39 3-4 流道網格建立 42 3-5 邊界條件設定 43 第四章 模擬結果與討論 45 4-1 無因次化參數 45 4-2 數值模擬驗證 46 4-3 葉片選擇 48 4-4 不同體積流率之流場特性分析 51 4-4-1 箱體與葉片整個系統之流場特性分析 52 4-4-2 葉片之流場特性分析 65 4-5不同體積流率與輸出特性之關係 66 4-6葉片實際應用於波浪發電裝置輸出性能之估算 68 第五章 結論與未來工作 71 5-1 結論 71 5-2 未來工作 72 參考文獻 74 附錄一 近期波浪發電系統裝置設計及專利[14] 77 附錄二 各國波浪發電機發展運作概況[4] 95

    [1] 財團法人國家實驗研究院科技政策研究與資訊中心,“海洋波能發電技術發展趨勢分析”, 2009.
    [2] 楊鏡堂, 萬曉明, 許妙行, 陳建志, 游宗翰, 黃如薏, 蔡佳玲, 黃郁棻,林佑俊,“我國前瞻能源技術探討”, 財團法人中技社, 2008.
    [3] 莫鈞維,“利用氣壓與震盪水柱轉換波浪能量”, 國立成功大學航空太空工程學系碩士論文, 2013年1月.
    [4] 財團法人工業技術研究院,“94年度「我國海域能源蘊藏量分析技術 之建立及開發方向評估」”, 委辦計畫, 2006.
    [5] 董東璟, 蔡政翰,“波浪與海流發電”, 科學發展月刊, 471期, 12-19頁, 2012年3月.
    [6] 中華民國物理協會雙月刊,“淺談我國海洋能源之開發前景”, 718-726頁, 2007年6月.
    [7] 能源論壇,“國際海洋能研討會成果紀要”, 經濟部能源局, 2011年6月.
    [8] 陳韋銘, 黃子鴻, 藍振洋, 顏志偉, “瓩級波浪發電系統之研究”, 第33屆海洋工程研討會論文集, 847-851頁, 2011年12月.
    [9] 洪長春,“波浪能發電之發展潛能”, 科技發展政策報導, 第三期, 2008年5月.
    [10] 林繼謙, “岸基震盪水柱式波浪發電系統之設計”, 國立成功大學系統及船舶機電工程學系碩士論文, 2009年7月.
    [11] 莫鈞維,“利用氣壓與震盪水柱轉換波浪能量”, 國立成功大學航空太空工程學系碩士論文, 2013年1月.
    [12] 陳韋祐,“應用於波浪發電之葉片與發電機整合設計與實現”, 國立成功大學系統與船舶機電工程學系碩士論文, 2011年7月.
    [13] Drew B., Plummer A. R. and Sahinkaya M. N., “A review of wave energy converter technology,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, December 1, 2009.
    [14] 黃光立,“海洋波能收集系統研究─平移推動水槽式”, 國立中山大學海洋環境及工程學系碩士論文, 2011年2月.
    [15] Annette von Jouanne, Ted Brekken, “Wave energy research, development and demonstration at Oregon State University,” IEEE, Vol. 1, No. 7, pp.24-29, 2011
    [16] 黃裕煒,“波浪能”, 綠色能源科技課程講義,國立彰化師範大學, 2012.
    [17] Harries, D., McHenry, M.P., Jennings, P. and Thomas, C., “Hydro, tidal and wave energy in Australia,” International Journal of Environmental Studies, Vol. 63 Issue 6, pp. 803-814, 2006.
    [18] Čarija Z., Kranjčević L., Banić V. and Čavrak M.,” Numerical analysis of Wells turbine for wave power conversion,” Engineering Review, Vol. 32 Issue 3, pp.141-146, 2012.
    [19] João V. A., Horácio V. and Adriane P. P., “A review on the performance of Savonius wind turbine,” Renewable and Sustainable Energy Reviews, pp. 3054-3064, 2012.
    [20] Launder, B. E. and Spalding, D. B., “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    [21] Menter, F. R., “Two-equation Eddy-viscosity turbulence models for engineering applications,” AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
    [22] Wilcox, D. C., “Multiscale model for turbulent flows,” AIAA 24th Aerospace Sciences Meeting America Institute of Aeronautics and Astronautics, 1986.
    [23] Baliga, B. R. and Patankar, S. V., “A control volume finite-element method for two-dimensional fluid flow and heat transfer,” Numerical Heat Transfer, Vol. 6, pp.245-261, 1983.
    [24] “ANSYS CFX-Solver Theory Guide,” ANSYS, Inc., 2009.
    [25] Barth, T. J. and Jesperson, D. C., “The design and application of upwind schemes on unstructured meshes,” AIAA, pp. 89-0366, 1989.
    [26] Rhie, C. M. and Chow, W. L., “A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation,” AIAA, pp. 89-0998. 1982.
    [27] Miyoshi N., Shouichiro IIO. and Toshihiko I., “Performance of double-step Savonius rotor for environmentally friendly hydraulic turbine,” Journal of Fluid Science and Technology, Vol. 3, No. 3, pp.410-419, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE