| 研究生: |
傅晧倫 Fu, Hao-Lun |
|---|---|
| 論文名稱: |
運動環境因子對有氧運動在執行控制功能中的認知促進效果 Environmental factors modulate aerobic exercise-induced neurocognitive changes associated with cognitive control |
| 指導教授: |
楊政達
Yang, Cheng-Ta |
| 共同指導教授: |
王駿濠
Wang, Chun-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 環境豐富性 、有氧運動 、腦電波 、認知控制 、額葉中線theta波 |
| 外文關鍵詞: | electroencephalography, aerobic exercise, environment enrichment, cognitive control, frontal midline theta |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去已經有許多研究表明有氧運動對於認知功能有促進效果。根據近期提出的適應能力模型,在有氧運動過程中若同時涉及認知刺激與環境豐富性則可能對認知功能帶來更大的運動增益效果。然而,關於此模型所提出的假設目前仍缺乏實徵研究證據,與此同時,過去研究對於有氧運動功能在健康年輕人族群是否有認知促進效果仍未臻一致。有鑑於此,本研究旨在檢驗環境豐富性是否能促進有氧運動的神經認知功能改變。本研究將四十二位參與者隨機分派至戶外運動組(n = 21, 年齡21.14 ± 1.01 歲)與室內運動組(n = 21, 年齡21.43 ± 1.33 歲)進行為期四週、每週三次、每次五公里的中高強度的跑步介入訓練,並在介入訓練前後採用漸進式折返跑測驗與旁側抑制作業同時紀錄腦電波訊號,觀察有氧適能與認知神經功能的改變。研究結果顯示,在介入訓練後,兩組提升相似程度的有氧適能,而行為表現上則觀察到戶外運動組加快了旁側抑制作業的反應時間但降低了反應正確率,而室內運動組則維持與前測相似程度的行為表現。此外,電生理的證據發現,在介入訓練後,戶外運動組產生較大的P3d振幅,表示能投入更多作業相關的注意力資源分配;而室內運動組則有較快的P3d潛時,表示具有較快的作業相關的刺激物評估速度。更有趣的是,時頻分析結果發現戶外運動組在四週介入運動後仍保持作業相關的額葉中線theta波;室內運動組則沒有觀察到這樣的效果,表示室內運動組在介入運動後降低作業相關的認知控制需求,但仍能維持相等程度的行為表現。再者,組別比較顯示在旁側抑制作業中的不一致情境時,室內運動組誘發較戶外運動組大的額葉中線theta波,表示戶外運動組產生較小且有效率的認知控制需求。綜上所論,本研究揭示了運動環境豐富性對有氧運動認知促進效果的重要性,且運動過程中涉及不同的環境刺激會影響運動帶來的認知神經功能改變。
The Adaptive Capacity Model suggests that simultaneous environmental enrichment (EE) enlarges aerobic exercise (AE)-induced cognitive benefits, highlighting the importance of cognitive engagement during AE. However, little is known about how EE modulates AE-induced cognitive benefits. Thus, this study aimed to investigate the effect of EE on exercise-induced neurocognitive changes. Forty-two participants were recruited and randomly assigned to either an outdoor exercise group (OE) (n = 21, aged 21.14 ± 1.01 years) or an indoor exercise (IE) group (n = 21, aged 21.43 ± 1.33 years). The exercise program consisted of a 5-km run at moderate-to-vigorous intensity three times per week over 4 weeks. During each running session, the IE group ran on a treadmill, whereas the OE group ran outdoors concurrently with route manipulation to induce cognitive engagement during exercise. This thesis used a progressive aerobic cardiovascular endurance run test and a flanker task with concurrent electroencephalography recording to evaluate exercise-induced changes. Results showed that (1) after exercise intervention, the OE group exhibited faster processing speed but decreased response accuracy regardless of the congruency effect, whereas such an effect was not evident for the IE group, suggesting that EE in exercise might be related to the change in the speed-accuracy tradeoff. (2) The findings of event-related potentials (ERP) showed that the OE group exhibited increased P3d amplitude while the IE group had an accelerated P3d latency following the exercise intervention, which might be the underlying mechanisms in supporting the changes in the speed-accuracy tradeoff. (3) The congruency effect on frontal midline theta (FM theta) activity was still observed for the OE group after the exercise intervention, while such an effect was relatively weaker for the IE group, supporting the exercise-induced reduction of task-related activity on the anterior cingulate cortex and the neural adaption in the attentional network for the IE group. Furthermore, group comparison analyses revealed that the IE group exhibited stronger FM theta oscillation during the condition requiring higher cognitive control than the OE group after the exercise intervention, indicating that the OE group might adopt a lower degree of cognitive control to process conflicting information. These findings suggest that an exercise environment can result in differential patterns of exercise-induced neurocognitive changes, potentially through additional cognitive engagement during exercise to navigate an outdoor environment. This thesis provides a novel perspective on the cognitive gains of exercise and an innovative strategy to maximize exercise-induced neurocognitive benefits.
ACSM. (2013). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.
Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N., Westen, S. C., . . . Kramer, A. F. (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. American journal of preventive medicine, 42(2), 109-119.
Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience letters, 274(1), 29-32.
Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., . . . Tennstedt, S. L. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. Jama, 288(18), 2271-2281.
Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24(6), 1832-1834.
Barcelos, N., Shah, N., Cohen, K., Hogan, M. J., Mulkerrin, E., Arciero, P. J., . . . Anderson-Hanley, C. (2015). Aerobic and Cognitive Exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. Journal of the International Neuropsychological Society, 21(10), 768-779.
Benjamini, Y., & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. The Annals of Statistics, 29(4), 1165-1188. Retrieved from http://www.jstor.org/stable/2674075
Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319.
Boiarskaia, E. A., Boscolo, M. S., Zhu, W., & Mahar, M. T. (2011). Cross-validation of an equating method linking aerobic FITNESSGRAM® field tests. American journal of preventive medicine, 41(4), S124-S130.
Brickenkamp, R., & Cubero, N. S. (2002). D2: test de atención: Tea.
Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., . . . Alonzo, A. (2016). Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. The British Journal of Psychiatry, 208(6), 522-531.
Burkhalter, T. M., & Hillman, C. H. (2011). A narrative review of physical activity, nutrition, and obesity to cognition and scholastic performance across the human lifespan. Advances in Nutrition, 2(2), 201S-206S.
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in cognitive sciences, 18(8), 414-421.
Cavanagh, J. F., Zambrano‐Vazquez, L., & Allen, J. J. (2012). Theta lingua franca: A common mid‐frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238.
Chaddock-Heyman, L., Erickson, K. I., Chappell, M. A., Johnson, C. L., Kienzler, C., Knecht, A., . . . Kao, S.-C. (2016). Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Developmental Cognitive Neuroscience, 20, 52-58.
Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: an ERP study. Psychophysiology, 50(11), 1174-1182.
Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and psychological measurement, 33(1), 107-112.
Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30.
Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain research, 1238, 127-142.
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., . . . Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
Cortese, G. P., Olin, A., O'Riordan, K., Hullinger, R., & Burger, C. (2018). Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity. Neurobiology of aging, 63, 1-11.
Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in neurosciences, 25(6), 295-301.
Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135-168.
Eisma, J., Rawls, E., Long, S., Mach, R., & Lamm, C. (2021). Frontal midline theta differentiates separate cognitive control strategies while still generalizing the need for cognitive control. Scientific Reports, 11(1), 1-14.
Erickson, K. I., Hillman, C. H., & Kramer, A. F. (2015). Physical activity, brain, and cognition. Current opinion in behavioral sciences, 4, 27-32.
Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of aging, 35, S20-S28.
Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., . . . Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19(10), 1030-1039.
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., . . . White, S. M. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16(1), 143-149.
Fabel, K., Wolf, S., Ehninger, D., Babu, H., Galicia, P., & Kempermann, G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Frontiers in neuroscience, 3, 2.
Fu, M., & Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends Neurosci, 34(4), 177-187. doi:10.1016/j.tins.2011.02.001
Habich, A., Slotboom, J., Peter, J., Wiest, R., & Klöppel, S. (2020). No effect of anodal tDCS on verbal episodic memory performance and neurotransmitter levels in young and elderly participants. Neural plasticity.
Hebb, D. O. (1947). The effects of early experience on problem-solving at maturity. American Psychologist, 2, 306-307.
Heil, M., Osman, A., Wiegelmann, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-task: Inhibitory executive process? Journal of psychophysiology, 14(4), 218.
Hillman, C. H., Pontifex, M. B., Castelli, D. M., Khan, N. A., Raine, L. B., Scudder, M. R., . . . Kamijo, K. (2014). Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics, 134(4), e1063-e1071.
Hogan, M. J., O’Hora, D., Kiefer, M., Kubesch, S., Kilmartin, L., Collins, P., & Dimitrova, J. (2015). The effects of cardiorespiratory fitness and acute aerobic exercise on executive functioning and EEG entropy in adolescents. Frontiers in human neuroscience, 9, 538.
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain stimulation, 8(3), 535-550.
Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S.-K., & Juan, C.-H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage, 98, 306-313. doi:https://doi.org/10.1016/j.neuroimage.2014.04.069
Huang, C.-J., Lin, P.-C., Hung, C.-L., Chang, Y.-K., & Hung, T.-M. (2014). Type of physical exercise and inhibitory function in older adults: an event-related potential study. Psychology of Sport and Exercise, 15(2), 205-211.
Hullinger, R., & Burger, C. (2015). Learning impairments identified early in life are predictive of future impairments associated with aging. Behavioural brain research, 294, 224-233.
Hullinger, R., O’Riordan, K., & Burger, C. (2015). Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k. Neurobiology of learning and memory, 125, 126-134.
Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., . . . Robinson, S. E. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport, 10(4), 675-679.
Jadad, A. R., & Rennie, D. (1998). The randomized controlled trial gets a middle-aged checkup. Jama, 279(4), 319-320.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081-10086.
Jankowsky, J. L., Melnikova, T., Fadale, D. J., Xu, G. M., Slunt, H. H., Gonzales, V., . . . Savonenko, A. V. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. Journal of Neuroscience, 25(21), 5217-5224.
Kao, S.-C., Cadenas‐Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425.
Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S.-C., Wang, C.-H., Kamijo, K., Khan, N., & Hillman, C. (2021). Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory. International Journal of Psychophysiology, 160, 10-17.
Klusmann, V., Evers, A., Schwarzer, R., & Heuser, I. (2011). A brief questionnaire on metacognition: psychometric properties. Aging & mental health, 15(8), 1052-1062.
Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., . . . Boileau, R. A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418-419.
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.
Lang, J. J., Phillips, E. W., Orpana, H. M., Tremblay, M. S., Ross, R., Ortega, F. B., . . . Tomkinson, G. R. (2018). Field-based measurement of cardiorespiratory fitness to evaluate physical activity interventions. Bulletin of the World Health Organization, 96(11), 794.
Leger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93-101.
Lieberman, D. (2014). The story of the human body: evolution, health, and disease: Vintage.
Lieberman, D. (2015). Is exercise really medicine? An evolutionary perspective. Current sports medicine reports, 14(4), 313-319.
Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.
Ludyga, S., Gerber, M., Pühse, U., Looser, V. N., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature human behaviour, 4(6), 603-612.
Ludyga, S., Mücke, M., Colledge, F., Pühse, U., & Gerber, M. (2019). A combined EEG-fNIRS study investigating mechanisms underlying the association between aerobic fitness and inhibitory control in young adults. Neuroscience, 419, 23-33.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101.
Marengoni, A., Rizzuto, D., Fratiglioni, L., Antikainen, R., Laatikainen, T., Lehtisalo, J., . . . Tuomilehto, J. (2018). The effect of a 2-year intervention consisting of diet, physical exercise, cognitive training, and monitoring of vascular risk on chronic morbidity—the FINGER randomized controlled trial. Journal of the American Medical Directors Association, 19(4), 355-360. e351.
Momi, D., Neri, F., Coiro, G., Smeralda, C., Veniero, D., Sprugnoli, G., . . . Santarnecchi, E. (2020). Cognitive enhancement via network-targeted cortico-cortical associative brain stimulation. Cerebral Cortex, 30(3), 1516-1527.
Mutz, J., Vipulananthan, V., Carter, B., Hurlemann, R., Fu, C. H., & Young, A. H. (2019). Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis. bmj, 364.
Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., . . . Laatikainen, T. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet, 385(9984), 2255-2263.
Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Stürmer, B. (2012). Theta Dynamics Reveal Domain-specific Control over Stimulus and Response Conflict. Journal of cognitive neuroscience, 24(5), 1264-1274. doi:10.1162/jocn_a_00128
Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194.
ODPHP. (2000). US Department of Health and Human Services: Healthy People 2010. http://www/health/gov/healthypeople/.
Olson, A. K., Eadie, B. D., Ernst, C., & Christie, B. R. (2006). Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus, 16(3), 250-260.
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., . . . Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104(13), 5638-5643.
Peven, J. C., Litz, G. A., Brown, B., Xie, X., Grove, G. A., Watt, J. C., & Erickson, K. I. (2019). Higher cardiorespiratory fitness is associated with reduced functional brain connectivity during performance of the stroop task. Brain Plasticity, 5(1), 57-67.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Polich, J. (2012). Neuropsychology of P300.
Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., . . . Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of cognitive neuroscience, 23(6), 1332-1345.
Purmann, S., Badde, S., Luna-Rodriguez, A., & Wendt, M. (2011). Adaptation to frequent conflict in the Eriksen Flanker Task: An ERP study. Journal of psychophysiology, 25(2), 50.
Qi, M., & Gao, H. (2020). Acute psychological stress promotes general alertness and attentional control processes: An ERP study. Psychophysiology, 57(4), e13521.
Raichlen, D. A., & Alexander, G. E. (2017). Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends in neurosciences, 40(7), 408-421.
Roach, B. J., & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34(5), 907-926.
Ruotsalainen, I., Gorbach, T., Perkola, J., Renvall, V., Syväoja, H. J., Tammelin, T. H., . . . Parviainen, T. (2020). Physical activity, aerobic fitness, and brain white matter: Their role for executive functions in adolescence. Developmental Cognitive Neuroscience, 42, 100765.
Saab, B. J., Georgiou, J., Nath, A., Lee, F. J., Wang, M., Michalon, A., . . . Roder, J. C. (2009). NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron, 63(5), 643-656.
Sanders, L. M., Hortobágyi, T., la Bastide-van Gemert, S., van der Zee, E. A., & van Heuvelen, M. J. (2019). Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PloS one, 14(1), e0210036.
Schmitt, B. M., Münte, T. F., & Kutas, M. (2000). Electrophysiological estimates of the time course of semantic and phonological encoding during implicit picture naming. Psychophysiology, 37(4), 473-484.
Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6), 695-703.
Sparing, R., Dafotakis, M., Meister, I. G., Thirugnanasambandam, N., & Fink, G. R. (2008). Enhancing language performance with non-invasive brain stimulation—a transcranial direct current stimulation study in healthy humans. Neuropsychologia, 46(1), 261-268.
Steer, R. A., Ball, R., Ranieri, W. F., & Beck, A. T. (1999). Dimensions of the Beck Depression Inventory‐II in clinically depressed outpatients. Journal of clinical psychology, 55(1), 117-128.
Stern, Y., Lee, S., Predovan, D., & Sloan, R. (2019). Sex moderates the effect of aerobic exercise on some aspects of cognition in cognitively intact younger and middle-age adults. Journal of clinical medicine, 8(6), 886.
Stern, Y., MacKay-Brandt, A., Lee, S., McKinley, P., McIntyre, K., Razlighi, Q., . . . Sloan, R. P. (2019). Effect of aerobic exercise on cognition in younger adults: A randomized clinical trial. Neurology, 92(9), e905-e916.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643.
Stroth, S., Hille, K., Spitzer, M., & Reinhardt, R. (2009). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychological rehabilitation, 19(2), 223-243.
Stroth, S., Reinhardt, R. K., Thöne, J., Hille, K., Schneider, M., Härtel, S., . . . Spitzer, M. (2010). Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults. Neurobiology of learning and memory, 94(3), 364-372.
Team, J. (2019). JASP (Version 0.11. 1). Computer software.
Themanson, J. R., Pontifex, M. B., & Hillman, C. H. (2008). Fitness and action monitoring: evidence for improved cognitive flexibility in young adults. Neuroscience, 157(2), 319-328.
Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5), 1628-1634. doi:10.1523/jneurosci.21-05-01628.2001
Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of applied physiology, 111(5), 1505-1513.
Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., . . . Kramer, A. F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in aging neuroscience, 2, 32. doi:10.3389/fnagi.2010.00032
Wang, C.-H., Lin, C.-C., Moreau, D., Yang, C.-T., & Liang, W.-K. (2020). Neural correlates of cognitive processing capacity in elite soccer players. Biological Psychology, 157, 107971. doi:https://doi.org/10.1016/j.biopsycho.2020.107971
Wang, C.-H., Moreau, D., Yang, C.-T., Lin, J.-T., Tsai, Y.-Y., & Tsai, C.-L. (2019). The influence of aerobic fitness on top-down and bottom-up mechanisms of interference control. Neuropsychology, 33(2), 245.
Wang, C.-H., Moreau, D., Yang, C.-T., Tsai, Y.-Y., Lin, J.-T., Liang, W.-K., & Tsai, C.-L. (2019). Aerobic exercise modulates transfer and brain signal complexity following cognitive training. Biological Psychology, 144, 85-98.
Wang, C.-H., Shih, C.-M., & Tsai, C.-L. (2016). The Relation Between Aerobic Fitness and Cognitive Performance: Is it mediated by brain potentials? Journal of psychophysiology, 30(3), 102-113. doi:10.1027/0269-8803/a000159
Wang, C.-H., Yang, C.-T., Moreau, D., & Muggleton, N. G. (2017). Motor expertise modulates neural oscillations and temporal dynamics of cognitive control. Neuroimage, 158, 260-270.
Westfall, D. R., Gejl, A. K., Tarp, J., Wedderkopp, N., Kramer, A. F., Hillman, C. H., & Bugge, A. (2018). Associations between aerobic fitness and cognitive control in adolescents. Frontiers in Psychology, 9, 1298.
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180-185.
Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London's layout drives structural brain changes. Current biology, 21(24), 2109-2114.
Yao, Z.-F., Sligte, I. G., Moreau, D., Hsieh, S., Yang, C.-T., Ridderinkhof, K. R., . . . Wang, C.-H. (2020). The brains of elite soccer players are subject to experience-dependent alterations in white matter connectivity. Cortex, 132, 79-91.
Zoladz, J., Pilc, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J., & Duda, K. (2008). Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol, 59(Suppl 7), 119-132.
校內:2027-09-21公開