研究生: |
許智銘 Syu, Jhih-Ming |
---|---|
論文名稱: |
氧化石墨烯光觸媒分解水製氫之研究 Graphite Oxide as a Photocatalyst for Hydrogen Production from Water |
指導教授: |
鄧熙聖
Teng, Hsi-sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 氧化石墨烯 、分解水 、光觸媒 、產氫 、二氧化鈦 、複合材料 |
外文關鍵詞: | Graphite oxide, Water splitting, Photocatalyst, Hydrogen generation, TiO2, Composite |
相關次數: | 點閱:87 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用改進式Hummers法製備氧化石墨烯(GO)半導體光觸媒,其能隙大小介於2.4-4.3 eV。由於適當的氧化程度使氧化石墨烯的層間距為0.42 nm。在紫外光或可見光照射之下,氧化石墨烯光觸媒可催化20%甲醇水溶液與純水的分解,穩定的氫氣產生。因為層狀氧化石墨烯易於分散於水中,因此氧化石墨烯表面不需要共觸媒就可促使氫氣產生。在照光反應期間,氧化石墨烯會被還原脫除部分含氧官能基,使其能隙減小且導電度增加,但此結構的變化並不影響穩定的氫氣產生。這項研究結果證明以石墨材料做為觸媒在太陽光照射下具有分解水的潛力。
利用碘酸鈉作為犧牲試劑與觸媒照光產生的電子反應,使氧化石墨烯可催化水溶液分解產生氧氣。此外,我們利用p型的氧化石墨烯與n型的二氧化鈦(TiO2)做為光觸媒,經由照光氧化石墨烯與二氧化鈦的導帶與價帶彎曲,二氧化鈦導帶上的電子無法躍遷至氧化石墨烯的導帶上而累積在p-n的界面進而還原氧化石墨烯,並形成GO/ TiO2複合材料,可催化純水分解產生氧氣。使用犧牲試劑分別做為電子的施體與受體,GO/TiO2可催化水分解分別產生氫氣與氧氣。然而,氧化石墨烯與二氧化鈦在鹼性溶液中不易形成複合材料,無法催化水分解產生氧氣,但鹼性環境下有助於GO與GO/TiO2產氫的活性。因此氧化石墨烯的還原或氧化石墨烯與二氧化鈦之間鍵結的電荷轉移為產氧的速率決定步驟。
A graphite oxide (GO) semiconductor photocatalyst with an apparent bandgap of 2.4–4.3 eV is synthesized by a modified Hummers’ procedure. The as-synthesized GO photocatalyst has an interlayer spacing of 0.42nm because of its moderate oxidation level. Under irradiation with UV or visible light, this GO photocatalyst steadily catalyzes H2 generation from a 20 vol % aqueous methanol solution and pure water. As the GO sheets extensively disperse in water, a cocatalyst is not required for H2 generation over the GO photocatalyst.
During photocatalytic reaction, the GO loses some oxygen functional groups, leading to bandgap reduction and increased conductivity. This structural variation does not affect the stable H2 generation over the GO. The encouraging results presented in this study demonstrate the potential of graphitic materials as a medium for water splitting under solar illumination.
On the other hand, GO photocatalyst can catalyze O2 generation from an aqueous NaIO3 solution in different concentration. In addition, we use p-type GO and n-tpye TiO2 as photocatalysts and the conduction band and valence band of both catalysts are bending during Hg-lamp irradiation. The electrons on the conduction band of TiO2 cannot transit to the conduction band of GO and accumulate on p-n junction to reduce GO, and then form composites. The GO/TiO2 composites can catalyze O2 generation from a pure water.
GO/TiO2 composites can catalyze O2 generation with the presence of sacrificial reagents as electron donor and electron acceptor, respectively. However, GO and TiO2 are difficult to form composites in basic solution so that it cannot catalyze O2 generation from water spilitting. But GO and GO/TiO2 are conduced to product H2 in basic solution. Therefore, the reduction by GO or charge transfer between the GO-TiO2 linkage is the limiting step.
1. 張立群譯, “光清淨革命-活躍的二氧化鈦光觸媒”, 協志工業叢書印行, 2000
2. 藤嶋昭, 本多健一, 菊池真一, “工業化學”, 1969, 72, 108.
3. A. Fujishima, K. Honda, Nature, 1972, 238, 37.
4. A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
5. A. Kudo, Catal. Surv. Asia, 2003, 31, 7.
6. A. Mills, S. L. Hnute, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.
7. M. Cratzel, Nature, 2001, 414, 338.
8. A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
9. F. E. Osterloh, Chem. Mater., 2008, 20, 35.
10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commun. 2001, 2416.
11. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348.
12. R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052.
13. K. Maeda, K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
14. A. Kudo, Inter. J. Hydrogen Ener., 2006, 31, 197.
15. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, Catal. Today, 2007, 122, 51.
16. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, J. Solid State Chem., 2004, 177, 4205.
17. J. N. Nian, C. C. Hu, H. Teng, Inter. J. Hydrogen Ener., 2008, 33, 2897.
18. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, J. Phys. Chem. B, 2001, 105, 10893.
19. H. Kato, A. kudo, J. Phys. Chem. B, 2001, 105, 4285.
20. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, J. Phys. Chem. B, 1999, 103, 1.
21. H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
22. A. Kudo, H. Kato, Chem. Phys. Lett., 2000, 331, 373.
23. S. Licht, J. Phys. Chem. B, 2003, 107, 4253.
24. A. Galinska, J. Walendziewski, Energy & Fuels, 2005, 19, 1143.
25. H. Kato, M. Hori, R.Konda, Y. Shimodaira, A. Kudo, Chem. Lett., 2004, 33, 1348.
26. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commum., 2001, 23, 2416.
27. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photochem. Photobiol. A, 2002, 148, 71.
28. D. A. Tryk, A. Fujishima, K. Honda, Electro. Acta., 2000, 45, 2363.
29.M. Machida, J. Yabunaka, T. Kihima, Chem. Commun. 1999, 1939.
30.H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
31.A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 2000, 104, 571.
32.M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 2000, 12, 812.
33.H. Kato, A. Kudo, J. Photochem. Photobio. A: Chem. 2001, 145, 129.
34.K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, Y. Kitayama, Chem. Lett. 2002, 1158.
35.M. Yoshino, M. Kakihana, Chem. Mater. 2002, 14, 3369.
36.M. Machida, K. Miyazaki, S. Matsushima, M. Arai, J. Mater. Chem. 2003, 13, 1433.
37.J. Ye, Z. Zou, A. Matsushita, Int. J. Hydrogen Energ. 2003, 28, 651.
38.T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, Y. Takita, J. Photochem. Photobio. A: Chem. 2004, 167, 149.
39.D. F. Li, N. Xu, Y. F. Chen, Z. G. Zou, Res. Chem. Intermed. 2005, 31, 521.
40.K. I. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater. 2005, 17, 5161.
41.S. Ikeda, M. Fubuki, Y. K. Takahara, M. Matsumura, Appl. Catal. A: General 2006, 300, 186.
42.R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 2219.
43 .H. Kato, A. Kudo, Chem. Phys. Lett. 1998, 295, 487.
44. Z. Zou, H. Arakawa, J. Photochem. Photobio. A: Chem. 2003, 158, 145.
45. V. M. Aroutiounian, V. M. Arakelyan, G. E. hahnazaryan, Solar Energy, 2005, 78, 581.
46. A. Kudo, Int. J. Hydrogen Energ. 2006, 31, 197.
47. D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature Commun. 2006, 440, 295.
48. Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 2000, 332, 271.
49. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature Lett. 2001, 414, 625.
50. M. Machida, S. Murakami, T. Kijima, J. Phys. Chem. B 2001, 105, 3289.
51. K. Sayama, H. Arakawa, K. Domen, Catal. Today 1996, 28, 175.
52. A. Kudo, H. Kato, Chem. Lett. 1997, 867.
53. H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
54. A. Kudo, H. Okutomi, H. Kato, Chem. Lett. 2000, 1212.
55. Y. Takahara, J. N. Kondo, D. Lu, K. Domen, Solid State Ionics 2002, 151, 305.
56. G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 2002, 1698.
57. H. Kato, A. Kudo, Phys. Chem. Chem. Phys. 2002, 4, 2833.
58. M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B 2005, 109, 7801.
59. K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, J. Catal. 2005, 232, 102.
60. T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo, H. Onishi, J. Phys. Chem. B 2006, 110, 7883.
61. T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 2006, 35, 274.
62. M. Yashima, Y. Lee, K. Domen, Chem. Mater. 2007, 19, 588.
63. H. Kato, A. Kudo, Catal. Today, 2003, 78, 561.
64. A. Kudo, R.Niishiro, A. Iwase, H. Kato, Chem. Phys., 2007, 339, 104.
65. A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
66. R. Abe, K. Sayama, K. Domen, H. Arakawa, Chem. Phys. Lett., 2002, 362, 441.
67. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, Chem. Phys. Lett., 2008, 452, 120.
68. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
69. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, J. Phys. Chem. B, 2005, 109, 20504.
70. K. Maeda, H. Terashima, K. Kase, K. Domen, Appl. Catal. A:Gener., 2009, 357, 206.
71. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, Catal. Today, 2003, 518, 555.
72. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
73. X. wang, K. Maeda, Y. Lee, K. Domen, Chem. Phys. Lett., 2008, 457, 134.
74. A. Kudo, I. Mikami, J. Chem. Soc., 1998, 94, 2929.
75. I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed., 2005, 44, 3565.
76. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
77. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa,J. Photochem. Photobiol., A, 2002, 148, 71.
78. R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun., 2005, 3829.
79. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, Chem. Lett., 2008, 37, 138.
80. M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Chem. Phys. Lett., 2008, 452, 120.
81. S. Yanagida , A. Kabumoto, K. Mizumoto, C. Pac, K. Yoshino, JCS-Chem. Commun., 1985, 8, 474.
82. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. Nature Materials 2009, 8, 76.
83. J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 2008, 103, 113712.
84. R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, J. Power Sources, 2006, 159, 781.
85. F. Valencia, A. H. Romero, F. Ancilotto, and P. L. Silvestrelli, J. Phys.Chem. B, 2006, 110, 14832 .
86. N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, Phys. Rev. Lett., 1965, 14, 225.
87. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon, 2004, 42, 2929.
88. W. Gao, L. B. Alemany, L. Ci , P. M. Ajayan, Nature Chem., 2009, 1, 403.
89. A. K. Geim, K. S. Novoselov, Nat. Mater., 2007, 6, 183.
90. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett., 2008, 8, 3498.
91. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, K. S. Novoselov, Nano Lett., 2008, 8, 1704.
92. J. S. Bunch, A. M.van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, P. L. McEuen, Science, 2007, 315 , 490.
93. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature , 2007, 448 , 457.
94. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature , 2006, 442 , 282.
95. C. Xu, X. Wang, J. W. Zhu, X. J. Yang, L. Lu, J. Mater. Chem. 2008, 18 , 5625.
96. Y. C. Si, E. T. Samulski, Chem. Mater., 2008, 20 , 6792.
97. C. Xu, X. Wang, J. W. Zhu, J. Phys. Chem. C ,2008, 112 ,19841.
98. R. Muszynski, B. Seger, P. V. Kamat, J. Phys. Chem. C, 2008, 112, 5263.
99. N. A. Luechinger, E. K. Athanassiou, W. J. Stark, Nanotechnology, 2008, 19, 6.
100. G. Williams, B. Seger, P. V. Kamat, ACS Nano 2008, 2, 1487.
101. Nethravathi, C.; Rajamathi, J. T.; Ravishankar, N.; Wang, C. M.;Shivakumara, C.; Rajamathi, M. Langmuir, 2008, 24 , 8240.
102. Chu Y. H., Yamagishi M., Wang Z. M., Kanoh H., Hirotsu T., Microporous Mesoporous Mater,. 2009, 118, 496.
103. G. Williams, P. V. Kamat, Langmuir 2009, DOI: 10.1021.
104. W. Q. Peng, Z. M. Wang, N. Yoshizawa, H. Hatori, T. Hirotsu, Chem. Commun,. 2008, 36, 4348.
105. D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu , ACS Nano, 2009, 3, 907.
106. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano, 2010, 4,380.
107. X. Y. Zhang, H. P. Li, X. Li. Cui, Y. Lin, J. Mater. Chem., 2010, 20, 2801.
108. K. sayama, H. Arakawa, J. Chem. Soc. Farady Trans., 1997, 93, 1647.
109. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem., 1986, 90, 292.
110. K. Maeda, K. Terumura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. Int. Ed., 2006, 45, 7806.
111. W. S. Hummers, Jr, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
112. H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
113. B. D. Cullity, S. R. Stock, 3rd ed., Prentice Hall, 2001.
114. M. Yan, F. Chem. J. Zhang, M. Anpo, J. Phys. Chem. B, 2005, 109, 8673.
115. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
116. S. Brunaller, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, 60, 390.
117. 陳俊吉, “金屬氧化物半導體在可見光分解水製氫之研究”國立成功大學化學工程學系碩士論文, 2005.
118. S. Park, R. S. Ruoff, Nature Nanotechnology, 2009, 4, 217.
119. R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, Y. H. Lee, Physical Review B 2009, 79, 125435.
120. H. K. Jeong, M. H. Jin, K. P. So, S. C. Lim and Y. H. Lee. J. Phys. D: Appl. Phys. 2009, 42, 065418.
121. K. A. Trick, T. E. Saliba, Carbon, 1995, 33, 1509.
122. C. H. Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon, 1995, 33, 1585.
123. J. I. Paredes, S. Villar-Rodil, Martínez-Alonso, J. M. D. Tascón, Langmuir, 2008, 24, 10560.
124. T. Szabó, O. Berkesi, I. Dékány, Carbon, 2005, 43, 3181.
125. L. J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc., 2009, 131, 11027.
126. G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11 169.
127. G. Kresse, D. Joubert, Phys. Rev. 1999, 59, 1758.
128. P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
129. W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
130. Two layers of GO separated by a vacuum of at least 16 Å in a single supercell are used in the present study in order to avoid the asymmetric effect in supercells consisting of only a single layer as the adsorbed oxygen atoms all locate on one side of the graphene sheet.
131. M. Shishkin, G. Kresse, Phys. Rev. B 2006, 74, 035101.
132. M. Shishkin, G. Kresse, Phys. Rev. B 2007, 75, 235102.
133. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, G. Kresse, Phys. Rev. B 2007, 76, 115109.
134. M. Shishkin, M. Marsman, G. Kresse, Phys. Rev. Lett. 2007, 99, 246403.
135. S. U. M. Khan, T. Sultana, Sol. Energy Mater. Sol. Cells 2003, 76, 211.
136. R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052