簡易檢索 / 詳目顯示

研究生: 葉韋廷
Ye, Wei-Ting
論文名稱: 高熵超合金(Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5)在不同溫度下之高速撞擊特性與微觀組織分析
Dynamic impact response and microstructural evolution of High Entropy Superalloy (Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5) under high strain rate and various temperatures
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 120
中文關鍵詞: 高熵超合金霍普金森桿高溫高應變速率差排
外文關鍵詞: High Entropy Superalloy, Hopkinson bar, high temperature, high strain rate, dislocation
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要透過霍普金森高速撞擊試驗機及高溫裝置,探討高熵超合金(Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5)在溫度25℃、800℃以及應變速率2200 s-1、3400 s-1、5000 s-1、6200 s-1之條件下之巨觀機械性質,另外透過OM、TEM觀察微觀結構,綜合兩者以了解溫度與應變速率對材料的塑性變形行為及微觀結構的影響。
    實驗結果顯示,高熵超合金(Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5)在相同溫度條件下,塑流應力值、加工硬化率、應變速率敏感性係數及溫度敏感性係數皆隨應變速率的上升而上升,而熱活化體積則隨應變速率的上升而下降。但隨著應變量的提升,在應變速率5000 s-1及6200 s-1條件下,應變速率敏感性係數隨應變量上升而減少,熱活化體積隨應變量上升而增加,與應變速率2200 s-1及3400 s-1條件趨勢相反;在相同應變速率條件下,塑流應力值、加工硬化率、應變速率敏感性係數隨溫度上升而下降,熱活化體積隨溫度上升而上升。最後,引入Zerilli-Armstrong 模型來預測合金在不同溫度及應變速率條件下之塑性變形行為。
    OM觀察中,相同溫度下,觀察到的滑移線隨應變速率上升而上升;相同應變速率下,滑移線數量隨溫度上升而下降。TEM觀察中,差排密度隨應變速率的上升而上升,隨溫度上升而下降;差排胞尺寸隨應變速率上升而縮小,隨溫度上升而增大。最後結合微觀及巨觀性質,可以得之差排密度、差排胞尺寸與塑流應力值呈線性關係。

    In this study, dynamic impact response and microstructural evolution of High Entropy Superalloy (Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5) under high strain rates from 2200 s-1 to 6200 s-1 and various temperatures from 25℃ to 800℃ were investigated by using split-Hopkinson pressure bar.
    The results show that the mechanical properties are greatly affected by strain rates and temperatures. It is found that the flow stress, work hardening rate, strain rate sensitivity and temperature sensitivity increase, but the thermal activation volume decrease with the increasing strain rate. However, under the strain rate 5000s-1 and 6200s-1, strain rate sensitivity decreases, and the thermal activation volume increases with the increasing strain. At a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease, but the thermal activation volume increase with the rising temperature. Finally, the Zerilli-Armstrong model is used to describe the plastic deformation behavior of High Entropy Superalloy (Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5) under different strain rates and temperatures.
    Optical microscope observations show that the amount of slip lines increase with increasing strain rate and decreasing temperature. Transmission electron microscope observations show that dislocation density increases, but dislocation cell size has the opposite result with increasing strain rate and decreasing temperature. Finally, it is found that the relation among stress, dislocation density and dislocation cell size is linear.

    摘要 I Abstract II 致謝 XII 總目錄 XIII 表目錄 XVI 圖目錄 XVIII 符號說明 XXIII 第一章 前言 1 第二章 理論及文獻回顧 3 2-1 合金介紹 3 2-1-1 高熵合金[2, 4-7] 3 2-1-2 鎳基合金強化機制 5 2-1-3 高熵超合金(Al10Ti0.5Cr7Co17Ni60Nb2Mo2W1.5) 6 2-2塑性變形之機械測試類別 7 2-3 一維波傳理論 8 2-4 霍普金森撞擊試驗機原理 11 2-5 材料塑性變形機制與特性 13 2-6 構成方程式 17 第三章 實驗方法及步驟 28 3-1 實驗流程 28 3-2 實驗設備與儀器 28 3-2-1 研磨拋光機 28 3-2-2 CNC放電線切割機 29 3-2-3 霍普金森桿撞擊試驗機 29 3-2-4 加熱爐 30 3-2-5 鑽石刀片切割機 31 3-2-6 雙噴式電解拋光機 31 3-2-7 光學顯微鏡(OM) 31 3-2-8 穿透式電子顯微鏡(TEM) 32 3-3 實驗步驟 32 3-3-1 實驗試件之製備 32 3-3-2 動態衝擊試驗 33 3-3-3 試件金相之觀察(OM) 34 3-3-4 穿透式電子顯微鏡(TEM)試片製備 34 第四章 實驗結果與討論 39 4-1 應力-應變曲線 39 4-2 加工硬化率 40 4-3 應變速率敏感性係數 42 4-4 熱活化體積 43 4-5 活化能 45 4-6 溫度敏感性係數 46 4-7 理論溫升量 47 4-8 材料構成方程式 49 4-9 光學顯微鏡(OM)金相組織觀察 50 4-10 穿透式電子顯微鏡(TEM)差排結構觀察 50 第五章 結論 111 參考文獻 113

    1. M. A. Meyers, Dynamic behavior of materials. John wiley & sons, 1994.
    2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Advanced Engineering Materials, vol. 6, pp. 299–303, 2004.
    3. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375-377, pp. 213–218, 2004.
    4. K.Y. Tsai, M.H. Tsai, J.W. Yeh, “Sluggish diffusion in CoCrFeMnNi high entropy alloys,” Acta Materialla, vol. 61, no. 13, pp. 4887-4897, 2013.
    5. J.W. Yeh, “Alloy design strategies and future trends in high-entropy alloys,” JOM, vol. 65, no. 12, pp. 1759-1771, 2013.
    6. Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Lu, T. G. Nieh, “An assessment on the future development of high-entropy alloys: Summary from a recent workshop,” Intermetallic, vol. 66, pp. 67-76, 2015.
    7. J.W. Yeh, “Recent progress in high-entropy alloys,” Ann. Chim. Sci. Mat., vol. 31, no. 6, pp. 633-648, 2006.
    8. P. Ganesan, C. Renteria, and J. Crum, “Versatile Corrosion Resistance of INCONEL alloy 625 in Various Aqueous and Chemical Processing Environments”
    9. A.C. Yeh, T.K. Tsao, Y.J. Chang, K.C. Chang, J.W. Yeh, M.S. Chiou, S.R. Jian, C.M. Kuo, W.R. Wang, and H. Murakami, “Development New Type of High Temperature Alloys – High Entropy Superalloys,” International Journal of Metallurgical & Materials Engineering, vol. 1, pp. 107, 2015.
    10. T. K. Tsao, A. C. Yeh, and H. Murakami, "The Microstructure Stability of Precipitation Strengthened Medium to High Entropy Superalloys," Metallurgical and Materials Transactions A, vol. 48A, pp. 2435-2442, 2017.
    11. S. Antonov, M. Detrois, and S. Tin, “Design of Novel Precipitate-Strengthened AlCoCrFeNbNi High-Entropy Superalloys,” Metallurgical and Materials Transactions A, vol. 49, pp. 305-320, 2018.
    12. U. S. Lindholm, "High strain-rate tests," Measurement of Mechanical properties, vol. 5, pp. 199-217, 1971.
    13. U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression," Experimental Mechanics, vol. 8, no. 1, pp. 1-9, 1968.
    14. J. Achenbach, Wave propagation in elastic solids. Elsevier, 2012.
    15. B. Dodd, “Adiabatic shear localization: occurrence, theories, and applications,” Pergamon Press, 1992.
    16. W.-S. Lee and C.-F. Lin, "Plastic deformation and fracture behavior of Ti–6Al–4V alloy loaded with high strain rate under various temperatures," Materials Science and Engineering: A, vol. 241, no. 1, pp. 48-59, 1998.
    17. D. Klahn, A. Mukherjee and J. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, vol. 3, ASM, pp. 951, 1970.
    18. J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, no. 169, pp. 63-82, 1970.
    19. R. Broudy, "Dislocations and Mechanical Properties of Crystals," Journal of the American Chemical Society, vol. 80, no. 18, pp. 5009-5010, 1958.
    20. G. E. Dieter and D. Bacon, Mechanical metallurgy. McGraw-Hill New York, 1986.
    21. H. Conrad, "Thermal activated deformation of materials," JOM, vol 16, pp. 582-588, 1964.
    22. L. Shi and D. Northwood, "The mechanical behavior of an AISI type 310 stainless steel," Acta metallurgica et materialia, vol 43, pp. 453-460, 1995.
    23. J. Campbell and A. Dowling, "The behavior of materials subjected to dynamic incremental shear loading," Journal of the Mechanics and Physics of Solids, vol. 18, pp. 43-63, 1970.
    24. J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects," Materials Science and Engineering, vol. 12, pp. 3-21, 1973.
    25. P. Ludwik, "Elements der Technologischen Mechanik Julius Springer," Berlin, Germany, 1909.
    26. Z. Gronostajski, "The constitutive equation for FEM analysis," Journal of Materials Processing Technology, vol. 106, pp. 40-44, 2000.
    27. Y. Bai and B. Dodd, "Adiabatic shear localization: Occurence, Theories and Applications, 1992," ed: Pergamon Press, Oxford.
    28. F. J. Zerilli and R. W. Armstrong, "The effect of dislocation drag on the stress-strain behavior of FCC metals," Acta Metallurgica et Materialia, vol. 40, no. 8, pp. 1803-1808, 1992.
    29. F. J. Zerilli and R. W. Armstrong, "Constitutive equation for hcp metals and high strength steels," High strain rate effects on polymers metals and ceramic matrix composites and other advanced materials, pp. 121-126, 1995.
    30. D. Umbrello, R. M'saoubi, and J. Outeiro, "The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel," International Journal of Machine Tools and Manufacture, vol. 47, pp. 462-470, 2007.
    31. L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study," Journal of Materials Processing Technology, vol. 182, pp. 319-326, 2007.
    32. G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures," in Proceeding of the 7th International Symposium in Ballistics, 1983, pp. 541-547.
    33. U. Andrade, M. Meters, and A. Chokshi, "Constitutive description of work and shock-hardened copper," Scripta metallurgica et materialia, vol. 20, pp. 933-938, 1994.
    34. S. Sharma, V. M. Chavan, R. G. Agrawal, R. J. Patal, R, Kapoor and
    J. K. Chakravartty, ”Split Hopkinson pressure bar : An Experimental Technique for High Strain Rate Tests,” India, Bhabha Atomic Research Centre, 2011.
    35. G. F. Vander Voort, et al, "ASM Handbook," Metallography and microstructures, vol. 9, pp.308, 2004.
    36. S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, "The deformation behavior of AA6111 as a function of temperature and precipitation state," Materials Science and Engineering: A, vol. 319, pp. 461-465, 2001.
    37. B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds," Materials Science and Engineering: A, vol. 349, no. 1-2, pp. 132-135, 2003.
    38. D. Chu and J. Morris, "The influence of microstructure on work hardening in aluminum," Acta materialia, vol. 44, no. 7, pp. 2599-2610, 1996.
    39. H. Kokawa, T. Watanabe, S. Karashima, "Dissociation of lattice dislocations in coincidence boundaries," Journal of Materials Science, vol. 18, pp. 1183-1194, 1983.
    40. W. C. Liu, F. R. Xiao, M. Yao, Z. L. Chen, Z. Q. Jiang, & S. G. Wang, “Relationship between the lattice constant of γ’phase and the content of δ phase, γ” and γ’ phases in Inconel 718,” Scripta Materialia, vol. 37, no. 1, pp. 59-64, 1997.
    41. W. C. Liu, M. Yao, Z. L. Chen, & S. G. Wang, “Niobium segregation in Inconel 718," Journal of Materials Science, vol. 34, no. 11, pp. 2583-2586, 1999.
    42. W.-S. Lee and C.-Y. Liu, “Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range,” Metallurgical and materials Transactions A, vol. 34, pp. 3175-3186, 2005.
    43. C. Zener and J. Hollomon, "Effect of strain rate upon plastic flow of steel," Journal of Applied physics, vol. 15, no. 1, pp. 22-32, 1944.
    44. K. C. Mills, Y. M. Youssef, Z. Li, & Y. Su, ”Calculation of Thermophysical Properties of Ni-based Superalloys,” ISIJ International, vol. 46, no. 5, pp. 623–632, 2006.
    45. C. T. Sims, “A history of superalloy metallurgy for superalloy metallurgists,” Superalloys 1984, proceedings of the fifth international symposium, pp. 399–419, 1984.
    46. A. K. Singh, N. Louat, and K. Sadananda, "Dislocation Network Formation and Coherency Loss around Gamma-Prime Precipitates in a Nickel-Base Superalloy," Metallurgical Transactions A, vol. 19, pp. 2965-2973, 1988.
    47. R. Ham, "The determination of dislocation densities in thin films," Philosophical Magazine, vol. 6, no. 69, pp. 1183-1184, 1961.
    48. Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida, and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation," Acta Materialia, vol. 51, no. 3, pp. 819-830, 2003.
    49. M. Kassner and K. Kyle, "Taylor hardening in five power law creep of metals and class M alloys," in Nano and Microstructural Design of Advanced Materials: Elsevier, 2003, pp. 255-271.
    50. M. Kassner, "A case for Taylor hardening during primary and steady-state creep in aluminum and type 304 stainless steel," Journal of Materials Science, vol. 25, no. 4, pp. 1997-2003, 1990.
    51. J. Gubicza, N. Chinh, J. Lábár, S. Dobatkin, Z. Hegedűs, and T. Langdon, "Correlation between microstructure and mechanical properties of severely deformed metals," Journal of Alloys and Compounds, vol. 483, no. 1-2, pp. 271-274, 2009.
    52. M. R. Staker, D. L. Holt, “THE DISLOCATION CELL SIZE AND DISLOCATION DENSITY IN COPPER DEFORMED AT TEMPERATURS BETWEEN 25 AND 700℃,” ACTA Metallurgica, vol. 20, pp. 569-579, 1972.
    53. P. Trivedi, D. P. Field and H. Weiland, “Alloying effects on dislocation substructure evolution of aluminum alloys,” International Journal of Plasticity, vol. 20, pp. 459-476, 2004.
    54. X. Wang, K. Chandrashekhara, S. A. Rummel, S. Lekakh, D. C. Vanaken, and R. J. O’Malley, “Modeling of mass flaw behavior of hot rolled low alloy steel based on combined Johnson-Cook and Zerilli-Armstrong model,” Journal of Materials Science, vol. 52, no. 5, pp. 2800-2815, 2017.
    55. Y. J. Chang, A. C. Yeh, “Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al0.2Ti0.3Co1.5CrFeNi1.5 high entropy alloy results in an excellent strength-ductility combination,” Materials Science & Engineering A, vol 805, 2021.
    56. Y. T. Chen, Y. J. Chang, H. Murakami, T. Sasaki, K. Hono, C. W. Li, K. Kakehi, J. W. Yeh and A. C. Yeh, “Hierarchical microstructure strengthening in a single crystal high entropy superalloy,” Scientific Reports, vol. 10, 2020.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE