| 研究生: |
鄞士傑 Yin, Shih-Jie |
|---|---|
| 論文名稱: |
飽和砂土中加勁材之拉出強度預測模式 Prediction of Pull-Out Strength of Reinforcement Embedded in Saturated Sands |
| 指導教授: |
黃景川
Huang, Ching-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 拉拔試驗 、界面直剪試驗 、土壤雙曲線模型 |
| 外文關鍵詞: | Pull-out test, Direct shear test, Hyperbolic soil models, Soil saturation |
| 相關次數: | 點閱:118 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究先以乾燥土壤施作不同加勁材長度在不同圍壓下之拉拔試驗,再根據 Huang (2014)所推導之拉出強度-拉出位移雙曲線理論建立預測拉拔試驗之模型,並得到模型之控制參數KT、nT、RT,在建立模型的過程中,摩擦角的決定十分重要,與模型的準確性密切相關,本研究採取兩種方式來決定摩擦角,分別為試驗條件為最短長度加勁材與最低圍壓之拉拔試驗所得之摩擦角,與施作加勁材之界面直剪試驗所得之加勁材與試驗土壤之表面摩擦角,比較兩者後以較準確之方式建立預測模型。
確立了模型建立的流程之後,改變試驗土樣之乾濕度,以飽和土樣進行試驗並建立拉出強度預測模型,並且也進行了飽和砂之界面直剪試驗求得摩擦角,台灣地區降雨量大,雨量豐沛,且現地容易遭遇地下水層之影響,所以藉由飽和濕土來模擬現地土壤之極端狀況,並觀測飽和砂拉拔試驗施作時,試體內孔隙水壓之變化情形。
試驗結果顯示在建立模型時,排除掉拉斷破壞之拉拔試驗可以得到較準確之有效長度,而拉拔試驗在飽和土壤中所得到之極限拉拔力比起乾燥土壤是下降的,與加勁材料與試驗土壤界面直剪試驗有相同的趨勢。乾砂拉拔試驗中所得之模型參數KT、nT、RT,與飽和拉拔試驗中之參數隨著加勁材長度的上升,有著相同的變化趨勢。
A heat-bonded nonwoven geotextile with different lengths was used to perform pull-out tests to investigate possible different behavior of pull-out of reinforcement embedded in dry and saturated sands. Hyperbolic pull-out resistance vs. displacement relationships are established to facilitate the prediction of reinforcement pull-out resistance. Three model constants were back-calculated from the pull-out stress-displacement curves.
It was found that these three constants have good relationships with the embedment length of reinforcement. The established hyperbolic pull-out model generates curves of pull-out stress-displacement well agreed with the experimental ones.
To facilitate the establishment of the hyperbolic pull-out model, four series of direct shear tests using a medium-scale direct shear apparatus were performed. The direct shear tests include sand-sand and sand-reinforcement interface tests using dry and saturated sands. Significant different friction behavior was found between dry and saturated conditions. This is also true between sand-sand and sand-reinforcement interface tests.
The peak friction angles obtained from the sand-reinforcement interface direct shear tests facilitate the establishment of an accurate model of ‘effective pull-out length’ which is a crucial element in the hyperbolic pull-out model.
1.Collios, A., Delmas, P. and Girous, J. P. (1980) “Experiments on Soil Reinforcement with Geotextiles” The Use of Geotextiles for Soil Improvement, ASCE National Convention, Portland, ASCE 80-177, pp. 53-73.
2.Duncan, J. M. and Chang, C. Y. (1970) “Nonlinear analysis of stress and strain in soils” Journal of Soil Mechanics and Foundation Division, Proc. ASCE, Vol. 96, No. SM5, pp. 1629-1653.
3.Hossain, M. and Yin, J. (2010) ”Behavior of a Compacted Completely Decomposed Granite Soil from Suction Controlled Direct Shear Tests. ” J. Geotech. Geoenviron. Eng. , Vol. 136, No. 1, pp. 189–198.
4.Huang, C. C., Hsieh H. Y. and Hsieh, Y. L. (2014) “Hyperbolic models for a 2-D backfill and reinforcement pullout” Geosynthetics International, Vol. 21, No. 3, pp. 168 –178.
5.Ingold, T. S. (1982) “Some Observations on the Laboratory Measurement of Soil-Geotextile Bond” Geotechnical Testing Journal, Vol.5, No.3, pp. 57-67.
6.Jewell, R. A. and Wroth, C. P. (1987) ”Direct Shear Test and ReinforcedSand” Geotechnique, Vol. 37, No. 1, pp. 53-68.
7.Koerner, R. M. (1998) “Designingy eith Geosynthetics” Fourth Edition, Prentice Hall.
8.Lambe, T. W. and Whitman R. V. (1979), Soil Mechanics SI Version, John Wiley & Sons, New York.
9.Ling, H. I., Wang, J. P. and Leshchinsky, D. (2008) “Cyclic behavior of soil-structure interfaces associated with modular-block reinforced soil-retaining walls” Geosynthetics International, Vol. 15, No. 1, pp. 14-21.
10.O’Rourke, T. D., Druschel, S. J. and Netravali, A. N. (1990) ”Shear Strength Characteristics of Sand Polymer Interfaces” Journal of Geotechnical Engineering, Vol. 116, No. 3, pp. 451-469.
11.Qiu, J. Y., Fumio, T. and Taro, U. (2000) “Constant Pressure and Constant Voume Direct Shear Tests on Reinforced Sand.” Soils and Foundations, Vol. 40, No. 4, pp. 1-17.
12.Richards, E. A. and Scott, J. D. (1985) “Soil Geotextile Frictional Properties” Second Canadian Symposium on Geotextiles and Geomenbranes, Edmonton, pp.13-24.
13.Williams, N. D. and Houlihan, M. P. (1987) ”Evaluation of Interface Friction7-Properties Between Geosynthetics and Soil” Proceedings of the 87 Geosynthetics Conference, New Orleans, Vol. 2, pp. 616-627.
14.林煒傑 (2008),「以模型試驗探討加勁邊坡之耐震行為」,國立成功大學土木研究所碩士論文。
15.吳國維 (2011),「應用真直接剪力試驗結果至路堤共構穩定分析”,逢甲大學土木工程學系碩士論文。
16.謝宏毅 (2012),「土壤應力-變位模式之建立與邊坡變位分析之應用」, 國立成功大學土木工程研究所碩士論文。
17.謝永倫 (2013),「考慮拉出破壞之加勁邊坡破壞分析」,國立成功大學土木工程研究所碩士論文。
18.葉憲文 (2015),「雙曲線剪力變位模式之建立與應用」,國立成功大學土木工程研究所碩士論文。
19.黃佑承 (2015),「飽和加勁地盤承載力之預測模式」,國立成功大學土木工程研究所碩士論文。