| 研究生: |
陳民山 Tran, Minh-Sang |
|---|---|
| 論文名稱: |
噴射點膠機的電磁致動器之設計與實驗 Design and Experiments of Linear Electromagnetic Actuators for Jet Dispenser |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 噴射點膠機 、線性馬達 、電磁致動器 、動圈致動器 、動磁致動器 、作動頻率 、微滴 |
| 外文關鍵詞: | Jet dispenser, linear motor, solenoid actuator, moving magnet actuator, moving coil actuator, operating frequency, droplet |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,提出了基於電磁的線性致動器(LEA)來驅動噴射點膠機的點膠系統,致動器具有三種類型,即電磁致動器(SA),動圈致動器(MCA)和動磁致動器(MMA)。電磁的線性致動器產生的驅動力必須大於噴射點膠機針頭的阻力。 致動器驅動力的值取決於作用在針頭上的阻力,阻力包括了阻尼力、O型環與針頭間的摩擦力、彈簧的壓縮力還有質量的慣性力,前面三種力是根據實驗模型所量測到的,而最後一個力是由於分配器針頭運動的極高速度而根據理論計算的。在設計過程中,驅動力是通過有限元分析(FEA)進行預測的。將模擬軟體用於模擬本研究自製的模型之前會透過其他文獻的實驗結果進行比較來評估有限元素分析解果的準確性。然後,根據主要組件的基本幾何尺寸(包括線圈繞組,永磁體和鐵殼),構建了電磁的線性致動器的三個樣式的有線元素分析的簡化2D模型。有限元分析模型的尺寸也會根據情況進行修改,以產生較高的驅動力,SA, MMA和 MCA三種模型的驅動力平均增加力分別是49.5,47和33.4%。
根據有限元分析結果的修改尺寸並製造了三個執行器的實驗原型。測試了三個電磁的線性致動器原型的運行條件,並測量了驅動力和作動頻率。本研究也針對溫度對施加電流和驅動力的影響進行觀察。最後,在各種背壓,工作頻率,針頭位移和流體溫度條件下,對基於電磁的線性致動器(ELA)的點膠機產生的膠狀點的大小進行了經驗研究,此外,本研究也提出了一種基於分析基板上點的形狀來計算點體積的近似方法。
模擬和實驗結果表明,動磁致動器(MMA)和動圈致動器(MCA)的推力在整個行程均保持不變,其變動幅度可忽略不計,動磁致動器(MMA)和動圈致動器(MCA)解決了即電磁致動器(SA)的缺點,即電磁致動器(SA)的推力在行程結束時急劇下降,會造成很大的變動幅度,此外,即電磁致動器(SA)的工作頻率在PWM佔空比為50%時最高只能達到10–20 Hz,而動磁致動器(MMA)和動圈致動器(MCA)在200 Hz時也能正常作動。根據實驗結果,設置參數對膠狀點大小的影響順序為流體溫度,背壓,衝程長度和作動頻率,且MMA/MCA形式的噴射點膠機可以用來對黏度為4000 cP的材料進行作動,從生產結果來看,動磁致動器(MMA)和動圈致動器(MCA)所製造的膠狀點和膠狀線達到了穩定生產的需求,證明了動磁致動器(MMA)和動圈致動器(MCA)可有效的取代電磁致動器(SA)並應用於噴射點膠機上。
Three linear electromagnetic actuators (LEAs), namely solenoid actuator (SA), moving coil actuator (MCA), and moving magnet actuator (MMA), are proposed for driving a jet dispenser of a dispensing system. The necessary thrust force generated from proposal LEAs must be higher than a driving force impacting the jet dispenser needle. The driving force magnitude is the total resistance force acting on the needle, including the damping force, the friction force between the O-rings and needle, the compression spring force, and the acceleration force of mass. These three first physical quantities are measured by an experiment setup, while the last one is calculated based on theory due to the extremely high velocity of the dispenser needle. For the LEAs design process, the thrust force is predicted by the finite element analysis (FEA). The accuracy of FEA results for the LEA models has been evaluated by comparing them with semi-empirical results from literature before the software is used to simulate the author's own proposal models. Then, three FEA simplified 2D models of SA, MCA, and MMA based on the basic geometric dimensions of the main components, including coil windings, permanent magnets, and iron shells, are built. The FEA models are modified to generate better models with a higher thrust force value. The average percentage increase of thrust force is 49.5, 47, 33.4% for SA, MMA, and MCA models after modification, respectively.
Three actuator prototypes are fabricated based on the modified dimensions from the FEA step. Three LEA prototypes and their operation conditions are tested and the thrust force and operation frequency are measured. The temperature effects on the drop of applied current and thrust force are also investigated in this research. The fluid dots’ size produced by the LEAs jet dispensers is empirically investigated under various conditions of backpressure, operating frequency, needle displacement, and fluid temperature. Besides, an approximate method is proposed to calculate the dot volume based on analyzing the shape of dots on the substrate.
Simulation and experiment results showed that the thrust force of MMA and MCA are maintained over the entire stroke length and its drop is negligible. The MMA and MCA have also solved the disadvantages of SA when SA’s thrust force dropped sharply at the end of the stroke. Besides, SA's operating frequency reaches a maximum of 10 – 20 Hz with the PWM duty cycle 50%, while MMA and MCA can operate at frequencies near 200 Hz. The influence order of the setup parameters on the fluid dot size is fluid temperature, backpressure, stroke length, and operating frequency. MMA/MCA jet dispensers can jet materials with a maximum viscosity of 4000 cP. Experiment results of making fluid dots and fluid lines from the proposed LEAs (MMA and MCA) are to meet stable operating requirements. From obtained results, proposed MMA and MCA can be considered to replace SA and are potential actuators to be applied for driving the jet dispenser.
1. Chen, X.; Zhang, W.; Schoenau, G.; and Surgenor, B. Off-line control of time-pressure dispensing processes for electronics packaging. IEEE Transactions on Electronics Packaging Manufacturing 2003, 26, pp. 286-293.
2. Chen, K.; Zhang, R.; and Lee, S. R. Integration of phosphor printing and encapsulant dispensing processes for wafer level LED array packaging. In Proceedings of 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging; pp. 1386-1392.
3. Chen, Y.; Wang, F.; and Li, H.-X. Experimental and modeling study of breakup behavior in silicone jet dispensing for light-emitting diode packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology 2015, 5, pp. 1019-1026.
4. Hicks, C. R.; Carlson, B. E.; and Mallick, P. Rheological study of automotive adhesives: Influence of storage time, temperature and shear rate on viscosity at dispensing. International Journal of Adhesion and Adhesives 2015, 63, pp. 108-116.
5. Mortimer, J. Adhesive bonding of car body parts by industrial robot. Industrial Robot: An International Journal 2004, pp.
6. Liu, S.; and Luo, X. LED packaging for lighting applications: design, manufacturing, and testing; John Wiley & Sons: 2011.
7. Sarvar, F.; Hutt, D. A.; and Whalley, D. C. Application of adhesives in MEMS and MOEMS assembly: a review. In Proceedings of 2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No. 02EX599); pp. 22-28.
8. Tekin, T. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE Journal of selected topics in quantum electronics 2011, 17, pp. 704-719.
9. Plastic Ball Grid Array. Availabe online: https://www.practicalcomponents.com/home/print-view.cfm?type=pkg&prid=1010 (accessed on 20 May 2020).
10. Zhang, Z.; and Wong, C. Recent advances in flip-chip underfill: materials, process, and reliability. IEEE transactions on advanced packaging 2004, 27, pp. 515-524.
11. Epotek Technology Inc. 2014. Selected application: Glob top [Pamhlet]. Availabe online: http://www.epotek.com/site/files/brochures/pdfs/Glob_Top_SAS.pdf
12. Hwang, J. S. Solder paste in electronics packaging: technology and applications in surface mount, hybrid circuits, and component assembly; Springer Science & Business Media: 2012.
13. Coombs, C. F.; and Holden, H. T. Printed circuits handbook; McGraw-Hill New York: 2001; Vol. 1.
14. VanBriesen, A. Process Control for Dispensing Gaskets. Assembly May 20, 2009.
15. Gasket Dispensing. Availabe online: http://www.nptinc.com/Gasket_Dispensing.htm (accessed on 20 May 2020).
16. Doming. Availabe online: http://www.nptinc.com/Doming.htm (accessed on 20 May 2020).
17. The Doming Manufacturing Process. Availabe online: http://www.contractdoming.com.au/how-is-doming-produced.html (accessed on 20 May 2020).
18. Delehanty, J. B.; and Ligler, F. S. Method for printing functional protein microarrays. Biotechniques 2003, 34, pp. 380-385.
19. Le Néel, T. A.; Mognol, P.; and Hascoët, J.-Y. A review on additive manufacturing of sand molds by binder jetting and selective laser sintering. Rapid Prototyping Journal 2018, pp.
20. Upadhyay, M.; Sivarupan, T.; and El Mansori, M. 3D printing for rapid sand casting—A review. Journal of Manufacturing Processes 2017, 29, pp. 211-220.
21. Jianping, L.; and Guiling, D. Technology development and basic theory study of fluid dispensing-a review. In Proceedings of Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'04); pp. 198-205.
22. Chen, X. Modeling and control of fluid dispensing processes: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology 2009, 43, pp. 276-286.
23. Chen, X.; and Kai, J. Modeling of positive-displacement fluid dispensing processes. IEEE transactions on electronics packaging manufacturing 2004, 27, pp. 157-163.
24. Chen, X. B. Modeling of Rotary Screw Fluid Dispensing Processes. Journal of Electronic Packaging 2006, 129, pp. 172-178, doi:10.1115/1.2721090.
25. Nguon, B.; and Jouaneh, M. Design and characterization of a precision fluid dispensing valve. The International Journal of Advanced Manufacturing Technology 2004, 24, pp. 251-260.
26. Babiarz, A. J. Jetting small dots of high viscosity fluids for packaging applications. Semiconductor International 2006, 29, pp. 2-6.
27. John, S.; Sirohi, J.; Wang, G.; and Wereley, N. M. Comparison of piezoelectric, magnetostrictive, and electrostrictive hybrid hydraulic actuators. Journal of intelligent material systems and structures 2007, 18, pp. 1035-1048.
28. Zhou, C.; Li, J.; Duan, J.; and Deng, G. The principle and physical models of novel jetting dispenser with giant magnetostrictive and a magnifier. Scientific reports 2015, 5, pp. 18294.
29. Jia, H.; Hua, Z.; Li, M.; Zhang, J.; and Zhang, J. A jetting system for chip on glass package. In Proceedings of 2009 International Conference on Electronic Packaging Technology & High Density Packaging; pp. 954-960.
30. Zhang, J.; Jia, H.; and Zhang, J. A fluid dynamic analysis in the chamber and nozzle for a jetting dispenser design. In Proceedings of 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging; pp. 879-883.
31. Kawase, Y.; and Ohdachi, Y. Dynamic analysis of automotive solenoid valve using finite element method. IEEE transactions on magnetics 1991, 27, pp. 3939-3942.
32. Linear solenoid actuator. Availabe online: https://www.electronics-tutorials.ws/io/io_6.html (accessed on accessed on 05 November 2019).
33. Bu, Z.; Lin, S.; Huang, X.; Li, A.; Wu, D.; Zhao, Y.; Luo, Z.; and Wang, L. A novel piezostack-driven jetting dispenser with corner-filleted flexure hinge and high-frequency performance. Journal of Micromechanics and Microengineering 2018, 28, pp. 075001.
34. Nguyen, Q.-H.; Choi, S.-B.; and Kim, J.-D. The design and control of a jetting dispenser for semiconductor electronic packaging driven by a piezostack and a flexible beam. Smart materials and structures 2008, 17, pp. 065028.
35. Jet Valve DD-5161. Availabe online: https://www.dimadispensing.eu/dispensing/products/valves (accessed on 09 July 2020).
36. Pico pulse valve. Availabe online: https://www.nordson.com/en/divisions/efd/products/jet-dispensers/pico-pulse-valve (accessed on 05 July 2020).
37. X-jet Valve. Availabe online: http://www.ssi-dispensing.com/?action=third&id=114 (accessed on 07 July 2020).
38. Zhou, C.; Duan, J.-a.; and Deng, G. Giant magnetostrictive material based jetting dispenser. Optik 2015, 126, pp. 5859-5860.
39. Liquidyn P-Jet Series Jetting Valves. Availabe online: https://www.nordson.com/en/divisions/efd/products/jet-dispensers/p-jet-valve (accessed on 10 July 2020).
40. Zhou, C.; Li, J.; and Deng, G. Control and jetting characteristics of an innovative jet valve with zoom mechanism and opening electromagnetic drive. Ieee/Asme Transactions On Mechatronics 2015, 21, pp. 1185-1188.
41. Guiling, D. The influence of structural parameters of electromagnetic fluid jetting dispenser. In Proceedings of 2008 International Conference on Electronic Packaging Technology & High Density Packaging; pp. 1-6.
42. Deng, G. L.; and Peng, Z. Y. Analysis and Optimization of an Electromagnetic Drive Dispenser. In Proceedings of Applied Mechanics and Materials; pp. 2009-2014.
43. PICO Pμlse Data Sheet. Availabe online: https://www.nordson.com/en/divisions/efd/products/jet-dispensers/pico-pulse-valve (accessed on 09 July 2020).
44. Hiemstra, D. B. The design of moving magnet actuators for largerange flexure-based nanopositioning. MS thesis, Dept. of Mech. Eng., Univ. of Michigan, Ann Arbor, MI, 2014.
45. Boldea, I.; and Nasar, S. A. Linear motion electromagnetic devices; Taylor & Francis: 1997.
46. Boldea, I.; and Nasar, S. A. Linear electric actuators and generators. IEEE Transactions on Energy Conversion 1999, 14, pp. 712-717.
47. Nagai, S.; and Kawamura, A. Position/Force Sensorless Force Control Using Reaction Force Observer for Compact Dual Solenoid Actuator. In Proceedings of IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society; pp. 3635-3640.
48. Nagai, S.; Nozaki, T.; and Kawamura, A. Real-time sensorless estimation of position and force for solenoid actuators. IEEJ Journal of Industry Applications 2016, 5, pp. 32-38.
49. Lee, H.-W.; Kim, K.-C.; and Lee, J. Review of maglev train technologies. IEEE transactions on magnetics 2006, 42, pp. 1917-1925.
50. Hysteresis Definition. Availabe online: https://electricalacademia.com/electromagnetism/hysteresis-loop-magnetization-curve/ (accessed on 11 July 2020).
51. Mitchell, J. Linear motion devices: What is a voice-coil actuator? Laser Focus World 2018, 54, pp. 41-43.
52. Moving magnet voice coil actuators offer better heat displacement. Availabe online: https://news.thomasnet.com/companystory (accessed on 02 November 2019).
53. Kawase, Y.; and Ohdachi, Y. Dynamic analysis of automotive solenoid valve using finite element method. IEEE T MAGN 1991, 27, pp. 3939-3942.
54. Linear solenoid actuator. Availabe online: https://www.electronics-tutorials.ws/io/io_6.html (accessed on 05 November 2019).
55. Tahmasebi, R. Modeling and Control of a Solenoid Actuator with Application to Electric Vehicle Transmissions. McGill University Libraries, 2015.
56. Song, C. W.; and Lee, S. Y. Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. APPL SCI-BASEL 2015, 5, pp. 595-607.
57. Bruckner, F.; Vogler, C.; Bergmair, B.; Huber, T.; Fuger, M.; Suess, D.; Feischl, M.; Fuehrer, T.; Page, M.; and Praetorius, D. Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations. J MAGN MAGN MATER 2013, 343, pp. 163-168.
58. anon. Chapter 22: Maxwell 2D Technical Notes. In Maxwell ANSYS Online Help, Maxwell: 2012.
59. Zhao, J.; Fan, L.; Liu, P.; Grekhov, L.; Ma, X.; and Song, E. Investigation on electromagnetic models of high-speed solenoid valve for common rail injector. MATH PROBL ENG 2017, 2017, pp.
60. Encica, L.; Makarovic, J.; Lomonova, E. A.; and Vandenput, A. J. Space mapping optimization of a cylindrical voice coil actuator. IEEE T IND APPL 2006, 42, pp. 1437-1444.
61. Olaru, R.; Astratini-Enache, C.; and Petrescu, C. Analysis and design of a moving-magnet type linear actuator with repulsive magnetic forces. INT J APPL ELECTROM 2012, 38, pp. 127-137.
62. Zhou, C.; Duan, J.-a.; Deng, G.; and Li, J. Improved thermal characteristics of a novel magnetostrictive jet dispenser using water-cooling approach. Applied Thermal Engineering 2017, 112, pp. 1-6.
63. Al-Ghathian, F.; and Tarawneh, M. Friction forces in o-ring sealing. Am. J. Appl. Sci 2005, 2, pp. 626-632.
64. Doan, D. H.; Nauroy, J.-F.; Delage, P.; Tang, A. M.; and Mainguy, M. Acoustic properties of poorly cemented sandstones under temperature and stress. In Proceedings of 45th US Rock Mechanics/Geomechanics Symposium.
65. Batzle, M. L.; Han, D.-H.; and Hofmann, R. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics 2006, 71, pp. N1-N9.
66. Wang, L. Y.; Du, J.; Luo, Z. W.; Du, X. H.; Li, Y. P.; Liu, J.; and Sun, D. H. Design and Experiment of a Jetting Dispenser Driven by Piezostack Actuator. Ieee T Comp Pack Man 2013, 3, pp. 147-156, doi:10.1109/Tcpmt.2012.2222407.
67. Nguyen, Q. H.; Han, Y.-M.; Choi, S.-B.; and Hong, S.-M. Dynamic characteristics of a new jetting dispenser driven by piezostack actuator. IEEE transactions on electronics packaging manufacturing 2008, 31, pp. 248-259.
68. Lobontiu, N. System dynamics for engineering students: Concepts and applications; Academic Press: 2017.
69. Hong, Y.-P.; and Li, H.-X. Comparative study of fluid dispensing modeling. IEEE Transactions on Electronics Packaging Manufacturing 2003, 26, pp. 273-280.
70. Zhao, Y.-X.; Li, H.-X.; Ding, H.; and Xiong, Y.-L. Integrated modelling of a time-pressure fluid dispensing system for electronics manufacturing. The International Journal of Advanced Manufacturing Technology 2005, 26, pp. 1-9.
71. Al-Ghathian, F.; Tarawneh, F.; and Muafag, S. Friction Forces in O-ring Sealing. American Journal of Applied Sciences 2005, 2, pp., doi:10.3844/ajassp.2005.626.632.
72. Free BH Curves of low carbon steel – SAE1020. Availabe online: https://magweb.us/free-bh-curves/ (accessed on 06 November 2019).
73. Lu, S.; Chen, X.; Zheng, H.; Zhao, Y.; and Long, Y. Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser. Micromachines 2019, 10, pp. 623.
74. Zhou, C.; Duan, J.-a.; Deng, G.; and Li, J. A novel high-speed jet dispenser driven by double piezoelectric stacks. IEEE Transactions on Industrial Electronics 2016, 64, pp. 412-419.
75. Phung, T. H.; and Kwon, K.-S. How to manipulate droplet jetting from needle type jet dispensers. Scientific reports 2019, 9, pp. 1-12.