簡易檢索 / 詳目顯示

研究生: 陳宥霖
Chen, You-Lin
論文名稱: 可使用不被信任測量儀器之可驗證式輕量化量子盲計算協定與協力量子雲端計算協定
Measurement-Device-Independent Verifiable Lightweight Blind Quantum Computation and Cooperative Quantum Cloud Computation Protocols
指導教授: 黃宗立
Hwang, Tzone-Lih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 52
中文關鍵詞: 量子盲計算雲端計算協力計算輕量化可使用不被信任量子測量儀器之協定平行計算量子衛星不被信任的第三方可驗證式量子協定
外文關鍵詞: Blind quantum computation, Cloud computing, Cooperative, Lightweight quantum, Measurement-device-independent, Parallel computing, Quantum satellite, Untrusted third party, Verifiable
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計了各兩個可使用不被信任測量儀器之可驗證式輕量化盲計算協定與兩個協力量子雲端計算協定。為了使得協定更加實際且輕量化,我們提出的協定可以使協定使用者只擁有最輕的兩個量子能力的情況下完成量子計算。我們首先提出一個可使用不被信任測量儀器之可驗證式輕量化盲計算協定,並使其擁有除了可驗證式的特性之外,亦擁有可進行更早期的竊聽者檢查之能力來減輕使用者成本。由於中國成功研發量子衛星,並成功進行一場衛星與地面的量子通訊實驗,設計可以利用量子衛星完成工作的協定變得越來越重要。因此,我們提出另一個可利用量子衛星的可使用不被信任測量儀器之可驗證式輕量化盲計算協定。考量到可能會遇到一個難以計算、龐大且複雜的量子計算結構,我們提出兩個屬於新形態的委託量子計算協定,並命名為協力量子雲端計算。這兩個協力量子雲端計算協定皆是分別建立在前面所提出的兩個新的可使用不被信任測量儀器之可驗證式輕量化盲計算協定。在貝爾態的幫助,與可對每個磚砌態單元間進行平行計算的能力下,這兩個協定可以在高效率的情況下完成對一龐大且複雜的量子計算結構之計算。這些提出的協定在我們將使用者的量子負擔減輕到可能是目前最輕的能力組合,並且有能有效率應付複雜的量子計算結構之情況下,它們將會帶來更加實際可靠的應用。此外,本篇論文將會透過對這些提出協定進行的安全性分析展現能強力對抗集體攻擊之強健性。

    This thesis designs two blind quantum computation protocols and two cooperative quantum cloud computation. For more lightweight and practical application, these protocols allow a lightweight user to complete his/her task with the lightest two quantum operations. We first propose a measurement-device-independent verifiable lightweight blind quantum computation protocol; alongside the verifiable mechanism, this protocol additionally have the ability of checking the eavesdroppers in an early phase, and thus lower the protocol’s potential quantum cost. With the development and a successful quantum communication experiment of a Chinese quantum satellite, making a quantum protocol be pro-satellite becoming more and more important. Therefore, we propose another measurement-device-independent verifiable lightweight blind quantum computation protocol that is pro-satellite. Considering about an enormous and complicated computational structure may encounter, we propose two protocols that are a new type of delegated quantum computation protocols called cooperative quantum cloud computation. Both protocols are based on the previously mentioned proposed blind quantum computation protocols respectively. With the help of the Bell states, and the parallel computing between the brickwork-state units, the proposed protocol can deal with a large and complicated structure of a blind quantum computation in an efficient way. By alleviate the user’s quantum burden to the possible lightest, and the efficient way to deal with a complicated computational structure, the proposed protocols are more practical in implementation. The security analyses in this thesis shows that the proposed protocols are robust against the collective attack.

    中文摘要 i Abstract iii 誌謝 v Content vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Contribution 3 1.3 Thesis Structure 5 Chapter 2 Preliminaries 7 2.1 Properties of single photons 7 2.2 Properties of Bell states [20] 9 2.3 Unitary Operators 10 2.4 Mechanism of verifiable blind quantum computation 13 2.4.1 Blind quantum computation 13 2.4.2 Dummy qubits and trap qubits 15 2.5 Mechanism of cooperative quantum cloud computation 17 2.5.1 The mechanism about sharing computation result between third parties 17 2.5.2 Using GHZ states to prepare the Bell states |ϕ^+ ⟩ 19 2.6 Robustness 20 Chapter 3 Measurement-Device-Independent Verifiable Lightweight Blind Quantum Computation 22 3.1 Proposed MDI-VLBQC protocol 22 3.2 Security analyses 26 3.2.1 The security analysis about the unitary operation UA 26 3.2.2 The security analysis about the unitary operation UB 30 Chapter 4 Pro-Satellite Measurement-Device-Independent Verifiable Lightweight Blind Quantum Computation and Cooperative Quantum Cloud Computation 34 4.1 Proposed pro-satellite MDI-VLBQC protocol 34 4.2 Security analyses 36 Chapter 5 Cooperative Quantum Cloud Computation 40 5.1 Cooperative quantum cloud computation 40 5.2 Pro-satellite cooperative quantum cloud computation 42 5.3 Security analyses 45 Chapter 6 Conclusion 50 Bibliography 51

    [1] Wei-Wei Zhang and Ke-Jia Zhang, "Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party," Quantum Information Processing, 2013. 12(5): pp. 1981-1990.
    [2] Nigel Jefferies, Chris Mitchell, and Michael Walker, "A proposed architecture for trusted third party services," Cryptography: Policy and Algorithms, 1996. 1029: pp. 98-104.
    [3] Xiu-Bo Chen, Gang Xu, Xin-Xin Niu, Qiao-Yan Wen, and Yi-Xian Yang, "An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement," Optics communications, 2010. 283: pp. 1561-1565
    [4] Sheng-Liang Huang, Tzonelih Hwang, and Prosanta Gope, "Multi-party quantum private comparison protocol with an almost-dishonest third party using ghz states," International Journal of Theoretical Physics, 2016. 55(6): pp. 2969-2976.
    [5] Shih-Min Hung, Sheng-Liang Hwang, Tzonelih Hwang, and Shih-Hung Kao, "Multiparty quantum private comparison with almost dishonest third parties for strangers," Quantum Information Processing, 2017. 16(2): p. 36.
    [6] Tzonelih Hwang, Tzu-Han Lin, and Shih-Hung Kao, "Quantum entanglement establishment between two strangers," Quantum Information Processing, 2016. 15(1): pp. 385-403.
    [7] Zhi-Rou Liu and Tzonelih Hwang, "Mediated Semi-Quantum Key Distribution Without Invoking Quantum Measurement," Annalen der Physik, 2018. 530(4): p. 1700206.
    [8] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal Blind Quantum Computation,” Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science 517, 2009.
    [9] Tomoyuki Morimae, and Keisuke Fujii, “Blind quantum computation protocol in which Alice only makes measurements,” arXiv: 1201.3966, 2013.
    [10] S. Popescu and D. Rohrlich, “Quantum Nonlocality as an Axiom,” Foundations of Physics, 1994. 24(379): pp. 379-385.
    [11] Joseph F. Fitzsimons, and Elham Kashef, “Unconditionally verifiable blind quantum computation,” Physical Review A, 2017. 96(1): p. 012303.
    [12] Michel Boyer, Dan Kenigsberg, and Tal Mor, "Quantum key distribution with classical Bob," Physical Review Letters, 2007. 99(14): p. 140501.
    [13] Michel Boyer, Ran Gelles, Dan Kenigsberg, and Tal Mor, "Semiquantum key distribution," Physical Review A, 2009. 79(3): p. 032341.
    [14] Hoi-Kwong Lo, Marcos Curty, and Bing Qi, “Measurement-Device-Independent Quantum Key Distribution,” Physical Review Letters, 2012. 108(13): p. 130503.
    [15] Brian Julsgaard, Jacob Sherson, J Ignacio Cirac, Jaromír Fiurášek, and EugeneS Polzik, "Experimental demonstration of quantum memory for light," Nature, 2004. 432(7016): pp. 482-486.
    [16] Sheng-Kai Liao, Wen-Qi Cai, Jian-Wei Pan et al., “Satellite-to-ground quantum key distribution,” Nature, 2017. 549(7670): pp. 43-+.
    [17] Park James, “The concept of transition in quantum mechanics,” Foundations of Physics, 1970. 1(1): pp. 23-33.
    [18] Wootters William, and Xurek Wojciech, ”A Single Quantum Cannot be Cloned,” Nature, 1982. 299(5886): pp. 802-803.
    [19] Dieks Dennis, "Communication by EPR devices". Physics Letters A, 1982. 92 (6): pp. 271-272.
    [20] W. P. Grice, "Arbitrarily complete Bell-state measurement using only linear optical elements," Physical Review A, 2011. 84(4): p. 042331.
    [21] Gu Jun., Tzonelih Hwang, “Lightweight authenticated quantum key distribution protocols with key recycling,” arXiv:2102.01878, 2021.
    [22] Bennett, CH., DiVincenzo, DP., Shor, PW. et. al., “Remote state preparation,” Physical Review Letters, 2001. 87(7): p. 077902.
    [23] V.Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of Modern Physics, 2009. 81(3): pp. 1301-1350.
    [24] E. Biham, M. Boyer, G. Brassard, J. Van De Graaf, and T. Mor, "Security of quantum key distribution against all collective attacks," Algorithmica, 2002. 34(4): pp. 372-388.
    [25] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of modern physics, 2009. 81(3): p. 1301.

    無法下載圖示 校內:2026-09-10公開
    校外:2026-09-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE