| 研究生: |
蘇聖涵 Su, Sheng-Han |
|---|---|
| 論文名稱: |
CCN1在小鼠主動脈瘤之角色 The role of CCN1 in aortic aneurysm in mice |
| 指導教授: |
莫凡毅
Mo, Fan-E |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | CCN1 、主動脈瘤 、Ang II 、整合素 |
| 外文關鍵詞: | CCN1, aortic, aneurysm, Ang II, integrins |
| 相關次數: | 點閱:177 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動脈瘤是一種慢性心血管疾病會造成血管破裂而致死。血管有不正常膨大的現象為主要的病理特徵。主動脈瘤可發生在動脈的任何部位,臨床上好發於腹及胸主動脈。因大部分患者無不適症狀,通常為其他原因檢查而偶然被診斷。先前的研究發現基質細胞蛋白CCN1會在疾病或受損組織中表現,並透過結合不同整合素受器來調控細胞。CCN1在主動脈瘤中可能扮演的生理角色仍不清楚,本研究假設CCN1會在主動脈瘤發生時受激發表達並透過其接受器整合素α6β1促進主動脈瘤生成。為測試CCN1在主動脈瘤中的角色,我們利用angiotensin II (Ang II)刺激主動脈瘤的小鼠模式,以Apoe-/-Ccn1+/LacZ小鼠觀察表現CCN1的位置與細胞種類,並以Apoe-/-CCN1dm/dm小鼠,利用其帶有兩序列突變而使CCN1蛋白選擇性無法結合整合素α6β1,來探討CCN1在主動脈瘤中之影響。在Ang II處理下,Apoe-/-CCN1+/LacZ小鼠在經過X-gal染色後,可以明顯發現CCN1之表現量在主動脈顯著上升,並在結構較破損的地方,有更多CCN1之表現量,顯示CCN1在此動脈瘤中可能為一重要因子。而在同樣處理下,Apoe-/-小鼠在好發動脈瘤的腹主動脈中,平滑肌細胞明顯流失,血管壁中彈性膜破碎斷裂。相對的,Apoe-/-CCN1dm/dm小鼠腹主動脈有正常的平滑肌細胞組成,及結構完整的彈性膜層。此結果顯示阻斷CCN1與α6β1結合可以減緩動脈瘤的發展,顯示CCN1在主動脈瘤中扮演重要的角色,可發展為新的治療標的。
Aortic aneurysm (AA) is a chronic vascular disease which may cause sudden death upon aortic rupture. The dilating arterial wall is a distinct feature of AA. Because AA is asymptomatic at earlier stages, it is often detected unexpectedly. The extracellular protein CCN1 is a secreted protein that regulates multiple cell functions. CCN1 is induced in tissue injury and pathological conditions often through binding to its integrin receptor α6β1 to increase oxidative stress, inflammatory responses, and matrix remodeling, which are also the driving forces for the progression of AA. We hypothesized that CCN1 may be induced to promote the progression of AA through integrin α6β1. To test this hypothesis, first we preformed the angiotensin II (Ang II)-induced AA mouse model in Apoe-/-CCN1+/LacZ mice to study the expression of CCN1. An osmotic pumps filled with Ang II (1 μg/kg/min) was implanted subcutaneously into Apoe-/-CCN1+/LacZ mice for 14 days. We found that Ang II induced CCN1 expression (reflected by the LacZ activity) in the aorta. To investigate the function of CCN1 through integrin α6β1, we used the α6β1-binding-defective CCN1 mutant (CCN1dm/dm) mice in the Ang II model. We found aortic dilation and smooth muscle cell loss in Apoe-/- mice receiving Ang II treatment, while Apoe-/-CCN1dm/dm mice displayed resistance to Ang II-induced aneurysm in the abdominal aorta. These data indicated that CCN1 promotes the progression of AA and SMC through binding to α6β1. Our results support to use CCN1 as a new therapeutic target for AA.
Upchurch, G. R. Jr., and Schaub, T. A. (2006). Abdominal aortic aneurysm.Am. Fam. Physician 73, 1198–1204.
Slaney, G., Ashton, F., Barnes, A.D., Hopkinson, B.R., Hamer, J.D., Skilton, J.S., Powis, S.J. (1971). Management of Aneurysm. Br Med J 29;2(5760):524.
Daugherty, A., Manning, M. W., and Cassis, L. A. (2000). Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein e-deficient mice. J. Clin. Invest. 105, 1605–1612.
Trache,t B., Piersigilli, A., Fraga-Silva, R.A., Aslanidou, L., Sordet-Dessimoz, J., Astolfo, A., Stampanoni, M.F., Segers, P., Stergiopulos, N. (2016). Ascending Aortic Aneurysm in Angiotensin II-Infused Mice: Formation, Progression, and the Role of Focal Dissections. Arterioscler Thromb Vasc Biol 36:673–681.
Lobel, M., Bauer, S., Meisel, C., Eisenreich, A., Kudernatsch, R. (2012). CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci 69:3101–3113
Rother, M., Krohn, S., Kania, G., Vanhoutte, D., Eisenreich, A. (2010). Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation 122:2688–2698
Mo, F.E., Lau, L.F. (2006). The matricellular protein CCN1 is essential for cardiac development. Circ Res 99:961–969
Schober, J.M., Lau, L.F., Ugarova, T.P., Lam, S.C. (2003). Identification of a novel integrin alphaMbeta2 binding site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. J Biol Chem 278:25808–25815
Lee, H.Y., Chung, J.W., Youn, S.W., Kim, J.Y., Park, K.W. (2007). Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100:372–380
Leu, S.J., Lam, S.C., Lau, L.F. (2002). Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248– 46255
Grzeszkiewicz, T.M., Lindner, V., Chen, N., Lam, S.C., Lau, L.F. (2002). The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha (6) beta (1) and cell surface heparan sulfate proteoglycans. Endocrinology 143:1441–1450
Moussad, E.E., Brigstock, D.R. (2000). Connective tissue growth factor: what’s in a name? Molecular Genetics and Metabolism 71:276–292.
Zarins, C.K., Glagov, S., Vesselinovitch, D., Wissler, R.W. (1990). Aneurysm formation in experimental atherosclerosis: relationship to plaque evolution. J Vasc Surg. 12: 246-256
Lindsay, M.E., Dietz, H.C. (2011). Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473(7347): 308–316.
Kim, K.H., Won, J.H., Cheng, N., Lau, F.L. (2018). The matricellular protein CCN1 in tissue injury repair. J Cell Commun Signal. 12(1): 273–279.
Jun, J.I., Kim, K.H., Lau, L.F. (2015). The Matricellular protein CCN1 mediates neutrophil Efferocytosis in cutaneous wound healing. Nat Commun. 6:7386.
Lau, L.F., and S.C. Lam. (1999). The CCN family of angiogenic regulators: the integrin connection. Exp. Cell Res. 248:44–57.
Brophy, C.M., Reilly, J.M., Smith, G.J., and Tilson, M.D. (1991) The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann. Vasc. Surg. 5: 229.
Mesh, C.L., Baxter, B.T., Pearce, W.H., Chisholm, R.L., McGee, G.S., and Yao, J.T. (1992). Collagen and elastin gene expression in aortic aneurysms. Surgery 112: 256.
Giancotti, F.G., and Ruoslahti, E. (1999). Integrins signaling. Science 285: 1028.
Cheuk, B. L., and Cheng, S.W. (2004). Differential expression of integrin α5β1 in human abdominal aortic aneurysm and healthy aortic tissues and its significance in pathogenesis. Journal of Surgical Research, 118(2), 176–182.
Barillari, G., Albonici, L., Incerpi, S., Bogetto, L., Pistritto, G., Volpi, A., Ensoli, B. and Manzari, V. (2001). Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing alpha5beta1 integrin expression and function. Atherosclerosis 154, 377-385.
Davenpeck, K.L., Marcinkiewicz, C., Wang, D., Niculescu, R., Shi, Y., Martin, J.L. and Zalewski, A. (2001). Regional differences in integrin expression: role of alpha(5)beta(1) in regulating smooth muscle cell functions. Circ. Res. 88, 352-358.
Liaw, L., Skinner, M.P., Raines, E.W., Ross, R., Cheresh, D.A., Schwartz, S.M. and Giachelli, C.M. (1995). The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J. Clin. Invest. 95, 713-724.
Dahm, L.M. and Bowers, C.W. (1998). Vitronectin regulates smooth muscle contractility via alphav and beta1 integrin. J. Cell Sci. 111, 1175-1183.
Lau, L.F., and Lam, S.C.T. (2005). Integrin-mediated CCN functions. CCN Proteins: A New Family of Cell Growth and Differentiation Regulators. B. Perbal and M. Takigawa, editors. Imperial College Press, London. 61–79.
Leu, S.J., Liu, Y., Chen, N., Chen, C.C., Lam, S.C.T., Lau, L.F. (2003). Identification of a Novel Integrin α6β1Binding Site in the Angiogenic Inducer CCN1 (CYR61). Journal of Biological Chemistry, 278(36), 33801–33808.
Hsu, P.L., Su, B.C., Kuok, Q.Y., Mo, F.E. (2013). Extracellular matrix protein CCN1 regulates cardiomyocyte apoptosis in mice with stress-induced cardiac injury. Cardiovasc Res. 98(1):64-72.