簡易檢索 / 詳目顯示

研究生: 林君曄
Lin, Chung-Yeh
論文名稱: 利用電漿輔助式分子束磊晶在矽金字塔基板上成長氮化鎵奈米柱壓電奈米發電器
GaN Nanorod Piezoelectric Nanogenerator Grown by Plasma-assisted Molecular Beam Epitaxy with Si Pyramid Substrate
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 氮化鎵奈米線奈米發電器矽金字塔基板壓電性
外文關鍵詞: GaN, nanowire, nanogenerator, silicon pyramid, piezoelectricity
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓電發電器(Piezoelectric Nanogenerator)是新穎的發電裝置之一,大多數的奈米壓電發電器是在磨平拋光的矽基板上成長奈米線製作而成,由於奈米線在平的矽基板上無法展現奈米線可彎折的優勢,因此本論文使用矽金字塔基板成長氮化鎵奈米線作為奈米發電器(下稱金字塔奈米發電器),並且對其壓電性進行探討以及比較。
    本論文將介紹氮化鎵奈米線的性質,金字塔基板的製作,氮化鎵奈米發電器的原理,以及金字塔氮化鎵奈米線發電器的製作與量測。最後證實金字塔奈米發電器的效能高於平基板奈米發電器。

    Piezoelectric Nanogenerator is a new frontier of harvesting ambient mechanical energy. Currently, the most common structure of piezoelectric nanogenerators is vertical integrated nanowire nanogenerator (VING). However, the VING was hardly utilized the piezoelectric advantage of blending nanowires. Here, using molecular beam epitaxy system (MBE), we have built a GaN nanowires nanogenerator based on silicon pyramid substrate to harvesting more mechanical energy and compare with traditional VING structure. The experimental results show that nanowire nanogenerator based on silicon pyramid substrate is substantially superior than the VING nanogenerator in terms of output piezoelectric voltage.

    目錄 第一章 前言 1 1.1 壓電奈米發電器的發明 1 1.2 VING結構壓電奈米發電器 1 1.3 在金字塔基板上的奈米線的可能優勢 2 第二章 實驗原理以及機制 4 2.1 矽金字塔的生成 4 2.1.1 矽晶圓的濕式蝕刻 5 2.1.2 非等向性蝕刻 5 2.1.3 矽金字塔的生成 7 2.2 氮化鎵的性質 9 2.2.1 氮化鎵概覽 9 2.2.2 氮化鎵的壓電性 10 2.3 氮化鎵奈米線在分子束磊晶系統的成長 11 2.4 奈米線壓電奈米發電器 14 2.4.1 奈米線的壓電性質 14 2.4.2 奈米發電器的發電器制 16 第三章 實驗儀器 20 3.1 電漿輔助式分子束磊晶系統(Plasma assisted molecular beam epitaxy, PAMBE) 20 3.2 濕式工作臺(wet bench) 22 3.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 23 3.4 旋轉塗佈儀(Spin Coater) 24 3.5 光致螢光光譜儀(photoluminescence spectroscopy, PL) 25 第四章 實驗方法以及量測 26 4.1 矽金字塔基板的製備 26 4.1.1 金字塔蝕刻 26 4.2 氮化鎵奈米線在金字塔基板上的成長 29 4.3 光致螢光光譜(Photoluminescence Spectrum)量測 33 4.4 氮化鎵奈米線發電器的製備 34 4.4.1 旋轉塗佈PMMA 34 4.4.2 Contact、電極、封裝與絕緣的製作 36 第五章 量測與分析 40 5.1 量測設備與方法 40 5.2 VING發電器(平基板)的壓電性量測 42 5.3 金字塔基板GaN奈米線發電器的壓電性量測 47 5.4 小結與討論 50 第六章 總結 51 6.1 結論 51 6.2 展望 51 參考文獻 52 表目錄 Table 1氫氧化鉀在不同矽晶面上的蝕刻速率 6 Table 2 KOH溶液,無IPA無PEG,20度 26 Table 3 KOH溶液,無IPA無PEG,60度 26 Table 4 KOH溶液,無IPA無PEG,80度 26 Table 5 KOH溶液,IPA 4%,無PEG,80度 27 Table 6 NaOH溶液1.5%,IPA 4%,PEG,80度 27 Table 7 VING結構奈米發電器與金字塔奈米發電器比較 43 圖目錄 Figure 1 A demostration of VING nanogenerator III Figure 2 A illustration of GaN nanowires grown on silicon pyramid substrate IV Figure 3 1. The formation of silicon pyramid substrate 2. The growth of GaN nanowires in MBE 3. PMMA spin coating 4. Making conductive contact 5. Packaging and shielding IV Figure 4 Cross section of silicon pyramid substrate V Figure 5 Silicon pyramids in different etching conditions VI Figure 6 Top view of GaN nanowires grown on silicon pyramid substrate VII Figure 7 Cross section of GaN nanowires grown on silicon pyramid substrate. VII Figure 8: PMMA on GaN nanowires, the length of nanowires are around 1.8μm, PMMA are filled between nanowires and covered the top of nanowires. VIII Figure 9 Apply silver paste to make contact, using conductive tape as electrode, packed up with insulating tape and aluminum foil. IX Figure 10 Voltage output of VING nanogenerator and pyramid generator. Pyramid generator have ~10mV of output voltage, with VING nanogenerator ~2.5mV under the same pressure. X Figure 11 VING結構奈米發電器示意圖 2 Figure 12 矽金字塔基板示意圖 3 Figure 13 成長在金字塔基板上的氮化鎵奈米線 3 Figure 14 本論文所使用的金字塔基板正面 4 Figure 15 矽金字塔基板側面 5 Figure 16 等向性與非等向性蝕刻示意圖 6 Figure 17 未加入IPA的KOH蝕刻 7 Figure 18 加入IPA的KOH蝕刻 8 Figure 19 氫氣泡泡在金字塔基板蝕刻中的作用 8 Figure 20 10~40μm的矽金字塔 9 Figure 21 烏采晶體的四面體結構 10 Figure 22 烏采晶體結構圖示 10 Figure 23 烏采晶體結構C軸方向受壓後會造成電偶極的改變 11 Figure 24 氮化鎵薄膜 12 Figure 25 氮化鎵奈米線 13 Figure 26 氮化鎵成長條件圖 13 Figure 27 氮化鎵晶面圖 14 Figure 28 氮化鎵奈米線的六角柱SEM圖 14 Figure 29晶格彎折示意圖 15 Figure 30 ZnO奈米線側向施壓的壓電壓分布模擬圖 16 Figure 31 晶格彎折造成電偶極示意圖 16 Figure 32 VING 結構奈米發電器結構示意圖 17 Figure 33奈米發電器的發電器制流程圖 17 Figure 34壓電奈米發電器受力前後 18 Figure 35 MBE主腔體示意圖 20 Figure 36 微奈米中心無塵室內的分子束磊晶系統 22 Figure 37 成功大學表面與磊晶實驗室MBE 22 Figure 38 成功大學微奈米中心 wet bench 23 Figure 39 Supra-55 24 Figure 40 旋轉塗佈儀 25 Figure 41 1.5%NaOH, 4%IPA, 0.016%PEG, 80度 28 Figure 42 4% KOH 4%IPA 無PEG 80度 28 Figure 43 矽金字塔基板上的氮化鎵奈米線成長條件流程圖 29 Figure 44 金字塔上成長氮化鎵奈米線,SEM top view, 20KX 30 Figure 45金字塔上成長氮化鎵奈米線,SEM top view, 50KX 30 Figure 46金字塔上成長氮化鎵奈米線,SEM cross section 10KX 31 Figure 47金字塔上成長氮化鎵奈米線,SEM cross scetion, 50KX 31 Figure 48金字塔上成長氮化鎵奈米線,SEM cross section, 標記奈米線長度 32 Figure 49金字塔上成長氮化鎵奈米線,SEM cross section, 標記奈米線直徑 32 Figure 50 在金字塔基板上成長的氮化鎵奈米線的光致螢光光譜 33 Figure 51 氮化鎵奈米線發電器的製備流程 34 Figure 52 PMMA塗佈流程圖 35 Figure 53 PMMA塗佈後的成品 35 Figure 54 銀膠塗佈 36 Figure 55 塗佈銀膠後的SEM圖,5KX 36 Figure 56塗佈銀膠後的SEM圖,10KX 37 Figure 57 黏貼銅膠帶 38 Figure 58 黏貼銅線 38 Figure 59 黏貼絕緣膠帶 38 Figure 60 在銅線兩端製作鱷魚夾容易夾住的電極 39 Figure 61 將樣品黏貼於載玻片上 39 Figure 62 成品 39 Figure 63 Stanford research systems sr560 40 Figure 64 Tectronicx DPO3034 41 Figure 65 接線方式 41 Figure 66 樣品的背面與鋁箔一起接地 42 Figure 67 製作完成的VING奈米發電器 43 Figure 68 VING奈米發電器單下壓放 44 Figure 69 VING 奈米發電器單下壓放,四個部分 45 Figure 70 單下壓放的原理 46 Figure 71 VING發電器連續壓放 47 Figure 72 金字塔發電器SEM cross section 48 Figure 73 金字塔發電器連續壓放 49 Figure 74 VING與金字塔發電器比較 49

    1.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    2.Yifan Gao, Zhong Lin Wang “Electrostatic Potential in a bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics” Nano letters, 2007, 2499-2505
    3.Wang, Z. L.; Song, J. "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays". Science 312 (5771): 242–246, (June 2006).
    4.Ravi Agrawal and Horacio D. Espinosa “Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation” NanoLett.2011, 11, 786–790
    5.Xudong Wang, “Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale”. Nano Energy (2012) 1,13–14, (September 2011)
    6.Zhong Lin Wang*, Guang Zhu, Ya Yang, Sihong Wang, and Caofeng Pan “Progress in Nanogenerators for Portable Electronics” Materials Today, december 2012, vol.15, No.12
    7.Wang, Z. L.; Song, J. "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays". Science 312 (5771): 242–246, (June 2006)
    8.Lin, Y.-F.; Song, J.; Ding, Y.; Lu, S.-Y.; Wang, Z. L. (14 January 2008). "Piezoelectric nanogenerator using CdS nanowires". Applied Physics Letters 92 (2)
    9.Huang, Chi-Te; Song, Jinhui; Lee, Wei-Fan; Ding, Yong; Gao, Zhiyuan; Hao, Yue; Chen, Lih-Juann; Wang, Zhong Lin (7 April 2010). "GaN Nanowire Arrays for High-Output Nanogenerators" (PDF). Journal of the American Chemical Society 132 (13): 4766–4771.
    10.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    11.Xudong Wang “Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale” Nano Energy (2012) 1, 13-24
    12.Yidong Hou ; Billie L. Abrams ; Peter C.K. Vesborg ; Mårten E. Björketun ; Konrad Herbst ; Lone Bech ; Brian Seger ; Thomas Pedersen ; Ole Hansen ; Jan Rossmeisl ; Søren Dahl ; Jens K. Nørskov ; Ib Chorkendorff “Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters” Journal of Photonics for Energy, vol.2(1), 026001 (Mar19, 2012)
    13.Yidong Hou ; Billie L. Abrams ; Peter C.K. Vesborg ; Mårten E. Björketun ; Konrad Herbst ; Lone Bech ; Brian Seger ; Thomas Pedersen ; Ole Hansen ; Jan Rossmeisl ; Søren Dahl ; Jens K. Nørskov ; Ib Chorkendorff “Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters”
    14.Vincent M. Donnelly; Avinoam Kornblit. “Plasma etching: Yesterday, today, and tomorrow” J. Vac. Sci. Technol. A 31(5), Sep/Oct 2013
    15.Anoop Prakash A B; J.Grace Jency; Manu C Mathew.“ A Review of various Wet Etching Techniques used in Micro Fabrication for Real Estate Consumption” International Journal of Computer Applications (0975 –8887) 1~2
    16.Anoop Prakash A B; J.Grace Jency; Manu C Mathew.“ A Review of various Wet Etching Techniques used in Micro Fabrication for Real Estate Consumption” International Journal of Computer Applications (0975 –8887) 1~2
    17.https://www.el-cat.com/silicon-properties.htm
    18.H. Seidel ; L. Csepregi ; A. Heuberger ; H. BaumgSrtel “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions” . Electrochem. Soc., Vol. 137, No. 11, November 1990 (3613~3614)
    19.Kazuo Sato, Mitsuhiro Shikida, Yoshihiro Matsushima, Takashi Yamashiro, Kazuo Asaumi, Yasuroh Iriye, Masaharu Yamamoto, “Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration” Sensors and Actuators A 61 (1998) 87-93
    20.E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver,*, K. Said, J. Poortmans, J. Szlufcik, J. Nijs “Improved anisotropic etching process for industrial texturing of silicon solar cells” Solar Energy Materials & Solar Cells 57 (1999) 179—188
    21.S A Campbell, K Coopert, L Dixont, R Earwakert, S N Ports and D J Schiffrins “Inhibition of pyramid formation in the I 1 etching of Si ~(100) in aqueous potassium hydroxide-isopropanol” J. Micmmech. Microeng. 5 (1995) 209-218.
    22.S A Campbell, K Coopert, L Dixont, R Earwakert, S N Ports and D J Schiffrins “Inhibition of pyramid formation in the I 1 etching of Si ~(100) in aqueous potassium hydroxide-isopropanol” J. Micmmech. Microeng. 5 (1995) 209-218.
    23.Yangang Han, Xuegong Yu, Dong Wang, and Deren Yang “Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells” Journal of Nanomaterials Volume 2013, Article ID 716012, 5 pages
    24.Yangang Han, Xuegong Yu, Dong Wang, and Deren Yang “Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells” Journal of Nanomaterials Volume 2013, Article ID 716012, 5 pages
    25.Shuji Nakamura, Michael R. Krames “History of Gallium–Nitride-Based Light-Emitting diodes for Illumination”0018-9129 2013 IEEE
    26.https://en.wikipedia.org/wiki/Gallium_nitride
    27.https://en.wikipedia.org/wiki/Gallium_nitride
    28.I.L.Guy, S.Muensit, and E.M.Goldys “Extensional piezoelectric coefficients of gallium nitride and aluminum nitride” Appl. Phys. Lett., Vol. 75, No. 26 27 December 1999
    29.https://chemistry.osu.edu/~woodward/ch754/struct/ZnO.htm
    30.https://chemistry.osu.edu/~woodward/ch754/struct/ZnO.htm
    31.“Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics” Zhong Lin Wang , Rusen Yang, Jun Zhou, Yong Qin, Chen Xu, Youfan Hu, Sheng Xu, Materials Science and Engineering R 70 (2010) 320–329
    32.J Nord et al, “Modelling of compound semiconductors: Analytical bond-order potential or gallium, nitrogen and gallium nitride”
    33.Vahid Mohammadi, Saeideh Mohannadi, Fereshteh Barghi “Piezoelectric Pressure Sensor Based on Enchanced Thin Film PZT Diaphragm Containing Nanocrystalline Powers”
    34.Kris A. Bertness, Norman A. Sanford, Albert V. Davydov “GaN Nanowires Grown by Molecular Beam Epitaxy” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 17, NO. 4, JULY/AUGUST 2011
    35.Aniruddha Konar, Amit Verma, Tian Fang, Pei Zhao, Raj Jana and Debdeep Jena “Charge transport in non-polar and semi-polar III-V nitride heterostrusture” 2012 Semicond. Sci. Technol. 27 024018
    36.Xudong Wang “Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale” Nano Energy (2012) 1, 13-24
    37.Daesu Lee, Tae Won Noh “Giant flexoelectirc effect through interfacial strain relaxation” Phil. Trans. R. Soc. A (2012) 370, 4944-4957
    38.Yifan Gao, Zhong Lin Wang “Electrostatic Potential in a bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics” Nano letters, 2007, 2499-2505
    39.Pavlo Zubko, Gustau Catalan, Alexander K. Tagantsev “Flexoelectric Effect in Solids” Annu. Rev. Mater. Res. 2013. 43: 387-421
    40.Yifan Gao, Zhong Lin Wang “Electrostatic Potential in a bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics” Nano letters, 2007, 2499-2505
    41.Chao-Hung Wang, Wei-Shun Liao, Zong-Hong Lin, Nai-Jen Ku, Yi-Chang Li. Yen-Chih Chen, Zhong-Lin Wang and Chuan-Pu Liu “Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration” Adv. Energy Mater. 2014, 4, 1400392
    42.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    43.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    44.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    45.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    46.R. Hinchet1, S. Lee2, G. Ardila1*, L. Montès1, M. Mouis1 and Z.L. Wang “DESIGN AND GUIDELINE RULES FOR THE PERFORMANCE IMPROVEMENT OF VERTICALLY INTEGRATED NANOGENERATOR”
    47.https://en.wikipedia.org/wiki/Molecular_beam_epitaxy
    48.Consonni, Vincent. "Self‐Induced Growth of GaN Nanowires by Plasma‐Assisted Molecular Beam Epitaxy." Wide Band Gap Semiconductor Nanowires 1: 177-213.
    49.Chao-Hung Wang, Wei-Shun Liao, Zong-Hong Lin, Nai-Jen Ku, Yi-Chang Li. Yen-Chih Chen, Zhong-Lin Wang and Chuan-Pu Liu “Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration” Adv. Energy Mater. 2014, 4, 1400392
    50.Chao-Hung Wang, Wei-Shun Liao, Zong-Hong Lin, Nai-Jen Ku, Yi-Chang Li. Yen-Chih Chen, Zhong-Lin Wang and Chuan-Pu Liu “Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration” Adv. Energy Mater. 2014, 4, 1400392
    51.M.G Kibria, S. Zhao, F.A Chowdhury, Q Wang, H. P. T. Nguyen, M.L Trudeau, H Guo& Z. Mi “Tuning the surface Fermi level on p type gallium nitride nanowires for efficient overall water splitting” Nature Communications 5, 3825

    無法下載圖示 校內:2020-09-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE