簡易檢索 / 詳目顯示

研究生: 吳宜錚
Wu, Yi-Cheng
論文名稱: 應用空間關聯性於提高批次產品均勻度之穩健性設計
Applied spatial correlation on robust experimental designs in enhancing batch product uniformity
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 穩健性設計空間相關性D最佳化準則渴望函數
外文關鍵詞: Robust design, Spatial correlation, D-optimal, Desirability function
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在某些製造業的批次生產過程中,產品品質特性分布不均勻是一個常見的問題。例如在烘烤製程中,可能由於加熱器裝載位置上的差異,導致每盤產品內的元件受熱程度不一,並造成產品在該盤空間分布上良率不一致的情形發生。而過往雖然已有許多學者們提出最大化批次產品均勻度的方法,但僅有少數著重於品質特性在空間上變異程度的差異。此一空間上的變異資訊不僅能使工程師更易於辨別變異來源,更能用來建構預測模型並在品質改善中提供更細部準確的變異資訊。

    因此,本研究期望藉由元件在空間資訊上的紀錄,分析其批次產品內元件間的空間相關性並與製程變數連結,來找出最佳製程可控因子水準的設定,以改善品質特性分布不均勻的情形。故在本研究中,首先以D最佳化準則求取在實驗資源限制下的最佳設計矩陣,接著藉由空間相關性的計算找出在某批次上相鄰元件間彼此的變異程度。此外,為更符合實務,將同時考慮多項期望達成的品質目標並考量噪音因子對於均勻度的可能影響。最後,以最佳的因子水準設定進行驗證實驗,並透過實例分析,發現能降低整體批次元件的變異程度並改善多品質特性下的均勻度。本研究對於整體批次產品均勻度的改善能應用於不同領域當中,並期望能夠提供給決策者作為品質改善的參考。

    Product non-uniformity has been a common issue in batch processing. Baking process is an example of this. A heater in an oven can be set in different location so components in a plate may not absorb the same amount of energy. This uneven distribution of quality characteristics may cause defects and produce nonconformity products. Although many studies have been done on maximizing the overall uniformity, few has focused on the spatial effect within a batch. With the information of spatial correlation between components, engineers can identify sources of variation and make prediction more precisely in the process of quality improvement.

    Therefore, this study aims to find spatial correlation between components in a batch and link to process variables so that a non-uniformity problem can be alleviated by setting values of control factors. In this study, we first apply D-criteria to find an optimal design matrix under constraints of experimental resources and then capture a correlation structure within plates of product components. Additionally, multiple response goals and possible noise effects are taken into consideration to meet practical demands. Finally, in the case study we compare the uniformity performance using the optimal setting and the setting under the current operating condition. The result finds an overall variance reduction for three quality responses so that the product uniformity is improved. The experiment is applicable in different fields as a reference for quality improvement.

    摘要 II Abstract III 致謝 IV Contents V List of Tables VII List of Figures VII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objective 2 1.3 Assumptions 3 1.4 Overview 3 Chapter 2 Literature Review 4 2.1 Measures of uniformity 5 2.2 Modeling methods for surface variation 6 2.2.1 Non-spatial modeling methods 6 2.2.2 Spatial modeling methods 7 2.3 Kriging model 10 2.3.1 Overview of Kriging 10 2.3.2 Mathematical model 11 2.3.3 The Kriging system 13 2.4 Robust parameter designs 15 2.5 Computer generated designs 16 2.5.1 Criteria 16 2.5.2 Exchange algorithm 17 2.6 The desirability function 18 Chapter 3 Spatial Modeling 20 3.1 Problem description 20 3.2 Procedure 22 3.3 Model development 23 3.3.1 Model assumptions and notations 23 3.3.2 Parameter estimation 25 3.4 Identification of spatial correlation and model variance reduction 26 3.4.1 Determination of within-batch covariates 26 3.4.2 Verification of within-batch covariates 27 3.4.3 Algorithm of optimal design matrix 29 3.4.4 Dual response surface methodology 31 3.4.5 Desirability function 33 3.5 Verification experiment 35 Chapter 4 Case study and data analysis 36 4.1 Data Description 36 4.2 Analysis Procedures 37 4.2.1 Data assumption and settings 37 4.2.2 Optimal design matrix building 38 4.2.3 Spatial correlation model fitting 39 4.2.4 Desirability estimation for response variables 42 4.2.5 Control variables optimization 43 4.3 Verification experiment 45 Chapter 5 Summary and Conclusion 47 5.1 Summary 47 5.2 Conclusion 48 References 49

    Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for simulation
    metamodeling. Operations research, 58(2), 371-382.
    Bao, L., Huang, Q., & Wang, K. (2015). Robust Parameter Design for Profile Quality
    Control. Quality and Reliability Engineering International, 32(3), 1059-1070.
    Bao, L., Wang, K., & Jin, R. (2014). A hierarchical model for characterising spatial
    wafer variations. International Journal of Production Research, 52(6), 1827-
    1842.
    Barton, R. R., Nelson, B. L., & Xie, W. (2013). Quantifying input uncertainty via simulation confidence intervals. INFORMS Journal on Computing, 26(1), 74-87.
    Biswas, A., & Si, B. C. (2013). Model averaging for semivariogram model parameters. Advances in Agrophysical Research, 4, 81-96.
    Boning, D. S., & Chung, J. E. (1996). Statistical metrology: Understanding spatial variation in semiconductor manufacturing. Microelectronic Manufacturing (pp. 16-26). International Society for Optics and Photonics.
    Chernoff, H. (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24(4), 586-602.
    Chowdhury, A. R., & Krishna Prasad, G. (1998). Reduction of Gold-Plating Thickness Variation. Quality Engineering, 11(1), 61-67.
    Cook, R. D., & Nachtrheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs. Technometrics, 22(3), 315-324.
    Cressie, N. A. (1993). Statistics for Spatial Data. Statistics for Spatial Data, Revised Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA.
    Czitrom, V., Mohammadi, P., Flemming, M., & Dyas, B. (1998). Robust design experiment to reduce variance components. Quality Engineering, 10(4), 645-655.
    de Aguiar, P. F., Bourguignon, B., Khots, M., Massart, D., & Phan-Than-Luu, R. (1995). D-optimal designs. Chemometrics and Intelligent Laboratory Systems, 30(2), 199-210.
    Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219.
    Gadhe, A., Sonawane, S. S., & Varma, M. N. (2013). Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. International Journal of Hydrogen Energy, 38(16), 6607-6617.
    Geedipalli, S., Rakesh, V., & Datta, A. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359-368.
    Grondona, M. O., & Cressie, N. (1991). Using spatial considerations in the analysis of experiments. Technometrics, 33(4), 381-392.
    Guo, R.-S., & Sachs, E. (1993). Modeling, optimization and control of spatial uniformity in manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 6(1), 41-57.
    Haran, M. (2011). Gaussian random field models for spatial data. Handbook of Markov Chain Monte Carlo, 449-478. Eds. Brooks,S.R., Gelman, Andrew, Jones, G.L. and Meng, X.L. CRC.
    Harrington, E. (1965). The desirability function. Industrial Quality Control, 21(10), 494-498.
    Huang, X., Zhou, Q., Zeng, L., & Li, X. (2015). Monitoring Spatial Uniformity of Particle Distributions in Manufacturing Processes Using the K Function. IEEE Transactions on Automation Science and Engineering, 14(2), 1031-1041.
    Hughes-Oliver, J. M., Lu, J.-C., Davis, J. C., & Gyurcsik, R. S. (1998). Achieving uniformity in a semiconductor fabrication process using spatial modeling. Journal of the American Statistical Association, 93(441), 36-45.
    Islam, M. A., Alam, M. R., & Hannan, M. O. (2012). Multiresponse optimization based on statistical response surface methodology and desirability function for the production of particleboard. Composites Part B: Engineering, 43(3), 861-868.
    Islam, M. A., Sakkas, V., & Albanis, T. A. (2009). Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material. Journal of Hazardous Materials, 170(1), 230-238.
    Johnson, M. E., & Nachtsheim, C. J. (1983). Some guidelines for constructing exact D-optimal designs on convex design spaces. Technometrics, 25(3), 271-277.
    Jung, J. (2017). Optimal Design of Plasmonic Nanoslit Array Sensor Using Kriging Model. IEEE Photonics Technology Letters, 29(12), 1039-1041.
    Jung, J.-R., & Yum, B.-J. (2011). Uniformity and signal-to-noise ratio for static and dynamic parameter designs of deposition processes. The International Journal of Advanced Manufacturing Technology, 54(5), 619-628.
    Khuri, A. I., & Cornell, J. A. (1996). Response surfaces: designs and analyses (Vol. 152). CRC press. New York.
    Kiefer, J., & Wolfowitz, J. (1959). Optimum designs in regression problems. The Annals of Mathematical Statistics, 30, 271-294.
    Kim, H. J., Kim, K. J., & Kwak, D. S. (2010). A case study on modeling and optimizing photolithography stage of semiconductor fabrication process. Quality and Reliability Engineering International, 26(7), 765-774.
    Lin, J., & Wang, K. (2011). Online parameter estimation and run-to-run process adjustment using categorical observations. International Journal of Production Research, 49(13), 4103-4117.
    Martin, J. D., & Simpson, T. W. (2005). Use of kriging models to approximate deterministic computer models. AIAA Journal, 43(4), 853-863.
    Mitchell, T. J. (1974). An algorithm for the construction of “D-optimal” experimental designs. Technometrics, 16(2), 203-210.
    Montgomery, D. C. (2008). Design and analysis of experiments.New York, NY: John Wiley & Sons.
    Myers, R. H., Khuri, A. I., & Vining, G. (1992). Response surface alternatives to the Taguchi robust parameter design approach. The American Statistician, 46(2), 131-139.
    Nair, V. N., Abraham, B., MacKay, J., Box, G., Kacker, R. N., Lorenzen, T. J., Nelder, J. A. (1992). Taguchi's parameter design: a panel discussion. Technometrics, 34(2), 127-161.
    Ramirez, J., & Taam, W. (2000). An autologistic model for integrated circuit manufacturing. Journal of Quality Technology, 32(3), 254.
    Shie, J.-R., & Yang, Y.-K. (2008). Optimizations of a photoresist coating process for photolithography in wafer manufacture via a radial basis neural network: A case study. Microelectronic Engineering, 85(7), 1664-1670.
    Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233-2241.
    Simpson, T. W., Poplinski, J., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17(2), 129-150.
    Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika, 12(1-2), 1-85.
    Steinberg, D. M., & Bursztyn, D. (1998). Noise factors, dispersion effects, and robust design. Statistica Sinica, 8(1), 67-85.
    Taam, W. (1998). A case study on process monitoring for surface features. Quality and Reliability Engineering International, 14(4), 219-226.
    Taam, W., & Hamada, M. (1993). Detecting spatial effects from factorial experiments: An application from integrated-circuit manufacturing. Technometrics, 35(2), 149-160.
    Triefenbach, F. (2008). Design of experiments: the D-optimal approach and its implementation as a computer algorithm. Bachelor's Thesis in Information and Communication Technology. Umea University, Department of Computing
    Science, Sweden.
    Van Beers, W. (2005). Kriging metamodeling in discrete-event simulation: an overview. Paper presented at the Proceedings of the 37th conference on Winter simulation.
    Van Beers, W. C., & Kleijnen, J. P. (2004). Kriging interpolation in simulation: a survey. Paper presented at the Simulation Conference, 2004. Proceedings of the 2004 Winter.
    Vining, G., & Myers, R. (1990). Combining Taguchi and response surface philosophies- A dual response approach. Journal of Quality Technology, 22(1), 38-45.
    Wald, A. (1943). On the efficient design of statistical investigations. The annals of mathematical statistics, 14(2), 134-140
    Wang, A., Wang, K., & Tsung, F. (2014). Statistical surface monitoring by spatial structure modeling. Journal of Quality Technology, 46(4), 359.
    Welch, W., YU, T., Kang, S. M., & Sacks, J. (1990). Computer experiments for quality control by parameter design. Journal of Quality Technology, 22(1), 15-22.
    Yin, J., Ng, S. H., & Ng, K. M. (2011). Kriging metamodel with modified nugget-effect: The heteroscedastic variance case. Computers & Industrial Engineering, 61(3), 760-777.
    Zhao, H., Jin, R., Wu, S., & Shi, J. (2011). PDE-constrained Gaussian process model on material removal rate of wire saw slicing process. Journal of Manufacturing Science and Engineering, 133(2), 021012.

    下載圖示 校內:2022-06-01公開
    校外:2022-06-01公開
    QR CODE