簡易檢索 / 詳目顯示

研究生: 吳俊明
Wu, Juan-Ming
論文名稱: 以RF磁控濺鍍法在塑膠基材上沈積銅膜之性質研究
The Characteristic Studies of Copper Films Deposited on Plastic Substrates by Magnetron RF Sputtering Techniques
指導教授: 林天財
Lin, Tien-Chai
李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 106
中文關鍵詞: 射頻磁控濺鍍聚亞醯胺銅膜附著力對位型聚苯乙烯
外文關鍵詞: copper film, PI, sPS, RF sputtering, adhesion strength
相關次數: 點閱:113下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球資訊及通訊產品的蓬勃發展,電子產品朝向小型化與多功能化,使得電子零件亦需邁向高集積化、高性能之動向發展,聚亞醯胺(Polyimide, PI)具有良好的高溫穩定性、抗氧化性、化學穩定性、低介電常數(dielectric constant),加上有優異的機械性質,及可撓曲等特性。因此,在PI基材上鍍上銅膜已經廣泛的應用在軟質印刷電路板上。然而,許多研究發現銅膜與PI基材的附著力普遍不佳,造成許多應用上的問題。
    本研究採取以下兩種方法來改善銅膜與PI基材之附著力。首先對PI基材做電漿前處理,之後利用射頻磁控濺鍍法鍍上銅膜,經電漿處理後的PI基材銅膜附著力顯著的上升,以氧氣電漿,處理時間5分鐘時,可以得到最佳的附著力72.23MPa。第二,添加不同的中介層(包括金屬、氮化物及氧化物)於銅膜與PI基材間。其中,添加中介層ZnO、Ti及Cr可以改善銅膜與PI基材之附著力。此外,本研究也探討熱處理對銅膜性質的影響。高溫環境長時間的處理下,銅膜與PI基材之附著力明顯的下降,在溫度150℃大氣氣氛下,歷經36小時的處理,銅膜之附著力只剩下18.47 MPa。退火處理會大幅改善銅膜的性質(如電阻率及表面型態等),銅膜電阻率隨著退火溫度升高而有下降的趨勢,在退火溫度350℃可以得到最低的電阻率1.94μΩ-cm。
    最後比較PI與對位型聚苯乙烯(syndiotactic polyester, sPS)不同基材的銅膜性質,研究顯示,PI基材擁有較高的表面能,使得銅膜的電阻率較低,也可以得到較佳的附著力。

    Polyimides(PIs) have recently captured an accelerated interest for use in microelectronic applications. This is attributed to the fact that polyimides offer high temperature stability, oxidation and high chemical resistance, low dielectric constant, and excellent mechanical properties such as a high modulus of elasticity. For these reasons, copper-deposited PI substrate is widely used in flexible printed circuit boards.
    Extensive studies on the relationship between a copper thin film and a polyimide substrate show that the adhesion strength is very weak. In this work, we introduce two methods to improve the adhesion strength between Cu and PI. First, after N2 and O2 plasma treatment of the PI substrate, the adhesion strength is substantially enhanced. The maximum adhesion strength of 72.23MPa is obtained for PI substrate treated in O2 plasma for 5 min. Second, we deposited various materials (including metal, nitride and oxide) on the polyimide substrate before deposited copper films. The adhesion strength is improved by adding ZnO, Ti and Cr. Finally, we investigate the effect of heat treatment on the copper thin film. The adhesion strength between the copper thin film and the PI substrate is reduced by heat treatment. The adhesion strength after heat treatment at 150℃ in air for 36 hours is decreased to 18.47MPa. Effect of annealing on the characteristic copper thin film such as resistivity and morphology was investigated. The electrical resistivity was lowered to 1.94μΩ-cm after argon atmosphere annealing at 350℃ for 30 min.
    The characteristics of copper thin films grown PI and syndiotactic polyester (sPS) substrates were studied. Due to the difference of surface free energy between PI and sPS substrates, copper-deposited PI substrate has lower electrical resistivity and better adhesion strength.

    總目錄 摘要………………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 致謝………………………………………………………………………Ⅲ 總目錄……………………………………………………………………Ⅳ 圖目錄……………………………………………………………………Ⅶ 表目錄……………………………………………………………………XI 第一章 緒論………………………………………………………1 1-1 前言………………………………………………………………1 1-2 軟質印刷電路板簡介……………………………………………2 1-3 銅膜之性質與結晶構造…………………………………………4 1-4 研究動機與目的…………………………………………………5 第二章 理論基礎與文獻回顧…………………………………………7 2-1 電漿理論基礎……………………………………………………7 2-2 物理氣相沈積法…………………………………………………11 2-2-1 濺鍍理論………………………………………………………12 2-2-2 射頻磁控濺鍍原理……………………………………………16 2-3 聚亞醯胺之特性…………………………………………………19 2-4 對位型聚苯乙烯之特性…………………………………………22 2-5 附著力之文獻回顧………………………………………………23 2-5-1 影響附著力之因素………………………………………23 2-5-2 表面能之理論分析………………………………………25 2-5-3 聚亞醯胺與銅膜之附著力………………………………27 第三章 實驗方法與流程………………………………………………28 3-1 實驗規劃…………………………………………………………28 3-2 實驗材料…………………………………………………………29 3-2-1 基板……………………………………………………………29 3-2-2 靶材……………………………………………………………29 3-3 實驗項目與實驗條件……………………………………………30 3-4 實驗流程…………………………………………………………33 3-4-1 試片製備流程圖………………………………………………33 3-4-2 試片量測………………………………………………………34 3-4-3 試片前處理……………………………………………………35 3-4-4 濺鍍設備………………………………………………………35 3-4-5 濺鍍機操作步驟………………………………………………36 3-5 試片分析及檢測…………………………………………………38 3-5-1 膜厚之成長速率量測…………………………………………38 3-5-2 鍍膜結構分析…………………………………………………39 3-5-3 鍍膜表面型態觀察……………………………………………39 3-5-4 鍍層表面粗糙度分析…………………………………………39 3-5-5 鍍膜縱深成分分析……………………………………………40 3-5-6 鍍膜化學成分分析……………………………………………40 3-5-7 基材接觸角分析………………………………………………41 3-5-8 電性量測………………………………………………………41 3-5-9 附著力量測……………………………………………………42 第四章 結果與討論……………………………………………………43 4-1 銅膜之成長速率…………………………………………………43 4-2 電漿前處理對銅膜之性質研究…………………………………45 4-2-1 鍍膜結構分析…………………………………………………45 4-2-2 鍍膜表面型態分析……………………………………………47 4-2-3 鍍膜化學組態分析……………………………………………50 4-2-4 電性之研究……………………………………………………53 4-2-5 附著力之研究…………………………………………………57 4-3 不同中介層對銅膜之性質研究…………………………………60 4-3-1 鍍膜結構分析…………………………………………………60 4-3-2 鍍膜表面型態分析……………………………………………64 4-3-3 鍍膜縱深成分分析……………………………………………67 4-3-4 鍍膜化學組態分析……………………………………………70 4-3-3 電性之研究……………………………………………………73 4-3-6 附著力之研究…………………………………………………76 4-4 熱處理對銅膜之性質研究………………………………………82 4-4-1 不同退火溫度之銅膜結構分析………………………………82 4-4-2 銅膜表面型態分析……………………………………………85 4-4-3 退火處理對銅膜電性之研究…………………………………87 4-4-4 時效處理對銅膜附著力之研究………………………………90 4-5 不同基材之銅膜性質研究………………………………………94 4-5-1 電性之研究……………………………………………………94 4-5-2 附著力之研究…………………………………………………99 第五章 結論……………………………………………………………102 參考文獻………………………………………………………………104 圖目錄 圖1-1 銅膜之結晶構造示意圖………………………………………4 圖2-1 低氣壓放電時電壓與電流之關係……………………………10 圖2-2 輝光放電示意圖………………………………………………10 圖2-3 電弧放電時陰陽極間電位分佈………………………………10 圖2-4 濺擊靶材表面所產生之交互作用……………………………13 圖2-5 兩種鍍層的結構模型:(a) Movchan和Demchisin所提出 (b) Thornton 所提出之SZM模型……………………………15 圖2-6 射頻濺鍍系統示意圖…………………………………………18 圖2-7 磁控濺射之示意圖……………………………………………18 圖2-8 兩種常見的聚亞醯胺化學結構 (a) Kapton® (b) Upilex-R®…19 圖2-9 對位型聚苯乙烯之分子結構示意圖…………………………………22 圖2-10 Young’s equation之示意圖………………………………………25 圖3-1 銅膜/中介層/Polyimide之結構示意圖……………………………31 圖3-2 試片製備流程圖………………………………………………………33 圖3-3 試片量測示意圖………………………………………………………34 圖3-4 α-step量測示意圖…………………………………………………38 圖3-5 四點探針之示意圖……………………………………………………41 圖3-6 Pull off test 示意圖………………………………………………42 圖4-1 RF Power與銅膜成長速率之關係圖…………………………………44 圖4-2 PI基材經電漿處理後之銅膜XRD繞射分析圖 (a)未經電漿處理 (b) N2電漿處理三分鐘 (c) O2電漿處理三分鐘………………………………………………46 圖4-3 不同電漿前處理I(111)/I(200)之關係圖(處理時間:3min) ……46 圖4-4 PI基材經電漿處理後之銅膜SEM照片 (a) 未經電漿處理 (b) N2電漿處理三分鐘 (c) O2電漿處理三分鐘……………………48 圖4-5 PI基材經電漿處理後之銅膜AFM照片 (a) 未經電漿處理 (b) N2電漿處理三分鐘 (c) O2電漿處理三分鐘……………………49 圖4-6 PI基材之XPS C1s光譜 (a) 未經電漿處理 (b) N2電漿處理三分鐘 (c) O2電漿處理三分鐘……………………51 圖4-7 PI基材經電漿處理之銅膜電阻率關係圖……………………………55 圖4-8 不同電漿前處理與Cu(111)FWHM值關係圖 (處理時間:3min) …………………………………………………56 圖4-9 不同電漿前處理與銅膜電阻率及表面粗糙度關係圖 (處理時間:3min) …………………………………………………56 圖4-10 PI基材經電漿處理之銅膜附著力關係圖…………………………59 圖4-11 添加不同中介層之銅膜XRD繞射圖…………………………………63 圖4-12 添加不同中介層之銅膜I(111) / I(200)比值……………………63 圖4-13 銅膜之SEM照片 (a) Cu/PI (b) Cu/ZnO/PI (c) Cu/Ti/PI……65 圖4-14 銅膜之AFM照片 (a) Cu/PI (b) Cu/ZnO/PI (c) Cu/Ti/PI……66 圖4-15 Cu/PI之AES元素縱深分佈圖………………………………………68 圖4-16 Cu/Ti/PI之AES元素縱深分佈圖…………………………………68 圖4-17 Cu/Cr/PI之AES元素縱深分佈圖…………………………………69 圖4-18 Cu/TiN/PI之AES元素縱深分佈圖………………………………69 圖4-19 不同試片XPS C1s光譜 (a) Fresh PI (b) Pull off Cu/Ti/PI (c) Pull off Cu/Cr/PI……………………………………………71 圖4-20 不同中介層之銅膜電阻率關係圖…………………………………74 圖4-21 添加不同中介層與Cu (111) FWHM值關係圖………………………75 圖4-22 不同中介層之銅膜電阻率與FWHM之關係…………………………75 圖4-23 添加不同中介層對附著力之影響…………………………………78 圖4-24 Cu/Ti/PI之拉伸破斷面立體照片…………………………………79 圖4-25 Cu/Cr/PI之拉伸破斷面立體照片…………………………………79 圖4-26 Cu/Ta/PI之拉伸破斷面立體照片…………………………………80 圖4-27 Cu/TiN/PI之拉伸破斷面立體照片…………………………………80 圖4-28 圖4-28 Pull off test 後鍍層與PI之破斷面示意圖 (a) 破真空製程 (b) 未破真空製程………………………………81 圖4-29 銅膜經不同退火溫度之XRD繞射圖 (a) 退火前 (b) 溫度150℃ (c) 溫度250℃ (d) 溫度350℃…………………84 圖4-30 不同退火溫度與Cu(111)FWHM值之關係……………………………84 圖4-31 銅膜經退火處理後之SEM照片(a) 退火前 (b) 溫度150℃ (c) 溫度350℃……………………………………86 圖4-32 銅膜經退火處理後之電阻率關係圖………………………………88 圖4-33 不同退火溫度與Cu (111) FWHM值及電阻率之關係圖……………89 圖4-34 試片經時效處理對銅膜附著力之影響關係圖 (處理條件:大氣環境、溫度150℃) ……………………………91 圖4-35 銅膜經時效處理之XRD結構分析圖 (a) 時效處理前 (b) 時效處理後(處理時間:36小時) ……………………………92 圖4-36 Cu/Ti/PI經時效處理後(處理時間:36小時) 之拉伸斷裂面立體照片……………………………………………92 圖4-37 Cu/Ti/PI試片之AES元素縱深分析圖(處理時間: 36小時)……93 圖4-38 PI基材之不同RF Power銅膜XRD結構分析圖 (a) 100W (b) 300W (c) 500W……………………………………96 圖4-39 sPS基材之不同RF Power銅膜XRD結構分析圖 (a) 100W (b) 300W (c) 500W……………………………………96 圖4-40 不同基材之銅膜RF Power與電阻率之關係圖……………………97 圖4-41 不同基材之銅膜RF Power與Cu(111)FWHM值之關係圖…………97 圖4-42 PI基材之銅膜SEM照片 (a) 100W (b) 300W (c) 500W…………98 圖4-43 不同基材與銅膜附著力之關係圖 (RF Power : 300W) ………100 圖4-44 PI基材與DI Water之接觸角………………………………………101 圖4-45 sPS基材與DI Water之接觸角……………………………………101 表目錄 表1-1 FPC基本五大結構………………………………………………3 表3-1 靶材種類表……………………………………………………29 表3-2 電漿處理條件…………………………………………………30 表3-3 金屬中介層之濺鍍條件………………………………………30 表3-4 氮化物中介層之濺鍍條件……………………………………31 表3-5 氧化物中介層之濺鍍條件……………………………………31 表3-6 銅膜之濺鍍條件………………………………………………32 表4-1 銅膜之成長速率………………………………………………44 表4-2 PI基材之不同化學組態百分比………………………………52 表4-3 PI基材經電漿處理前後之銅膜電阻率實驗結果……………55 表4-4 PI基材經電漿處理前後之銅膜附著力實驗結果……………59 表4-5 中介層之結晶構造……………………………………………62 表4-6 不同試片之化學組態百分比…………………………………72 表4-7 不同試片之銅膜電阻率………………………………………74 表4-8 不同試片之附著力實驗結果…………………………………78 表4-9 銅膜經退火處理之電阻率比較………………………………88 表4-10 試片經時效處理之附著力比較………………………………91 表4-11 不同基材之接觸角與表面能之比較…………………………100

    [1] 邱以泰,胡應強,陶惟翰,林伯耕,“高密度印刷電路板感光性介電材料之探討”,電子構裝 技術特刊,工業材料, 175(2001), pp.129-130.
    [2] 陳嘉彥,“軟質印刷電路板之簡介”,工業材料,127(1997).
    [3] 劉金耀,“印刷電路板用軋延銅箔”,電子與材料雜誌,15(1998).
    [4] Brian Chapman,Glow Discharge Processes,John Wiley and Sons,New York,(1980).
    [5] 艾啟峰,“電漿工程科技在表面處理工業應用之發展(上)”,科儀新知,(1998).
    [6] S.M. Rossnagel et al.,“Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A, (1982).
    [7] J.A. Thomton,“Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology, 11(4), (1973), pp.666-670.
    [8] M.K. Lee and H.S. Kang,“Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating”,Journal of Material Research,12(9), (2000) pp.1400-2393.
    [9] 林光隆,國立成功大學 材料科學及工程學系,“材料表面工程講義”,chap.7,(2001).
    [10] John L. Vossen and Werner Kerm,“Thin Film Process”, Academic Process, (1999), pp.134.
    [11] 林金雀,“聚亞醯胺在電子相關產業之應用”,化工資訊,(1998),pp29-34.
    [12] 吳中仁,“s-PS 之特性與應用”,化工資訊,12 (1996).
    [13] R.Flitsch, and D-Y.Shih, “A study of modified polyimide surfaces as related to adhesion” Journal of Vacuum Science Technology,A8(3) (1990),pp.2380.
    [14] P.N. Sanda, J.W. Bartha, J.G. Clabes, J.L. Jordan, C. Feger, B.D. Silverman, and P.S.Ho, Journal of Vacuum Science Technology, A6,1035(1988).
    [15] N.J. Chou, D.W. Dong, J. Kim and A.C. Liu, J. Electrochem. Soc., 131(1984), pp.2335.
    [16] F.S. Ohuchi and S.C. Freilich, Journal of Vacuum Science Technology,A4(1986),pp.10398.
    [17] Shedden, B.A.: Samandi, M. ; Window, “Influence of substrate bias on the microstructure of sputtered Al-Zn alloy coatings”,Surface and Coatings Technology Volume: 68-69,December,(1994),pp.332-338.
    [18] Young Suk Kim, Donggeun Jung, Dong Joon Kim,and Suk-Ki Min,“Effect of NH3 Plasma Treatment of the Substrate on Metal Organic Chemical Vapor Deposition of Copper Films”, Japanese Journal of Applied Physics Volume:37, August, (1998).
    [19] H.Toyota, T.Kawanoue, H.Kaneko, and M.Miyauchi,Proceeding of 32nd International Reliability Physics Symposium, San Jose , CA, (1994), pp178.
    [20] Junhwan Oh, Jaegab Lee, Cjongmu Lee, Material Chemistry and Physics 73(2002), pp227-234.
    [21] Y.Nakamura, Y.Suzuki, Y.Watanabe, “Effect of oxygen plasma etching on adhesion between polyimide films and metal”, Thin Solid Films 290-291(1996), pp.367-369.
    [22] Milton Ohring, The Materials Science of Thin Films, Hoboken, New Jersey, (1992), pp 455-461.
    [23] 吳南均,丁信智,“高等X光學”, (2001), pp.172-173.
    [24] Y.Nakamura, Y.Suzuki, Y.Watanabe,“Effect of oxygen plasma etching on adhesion between polyimide films and metal”, Thin Solid Films 290-291(1996), pp.368.
    [25] R.Flitsch,D-Y.Shih, “A study of modified polyimide surfaces as related to adhesion”, Journal of Vacuum Science Technology, A8(3), (1990),pp2379-2381.
    [26] Cheng-Li Lin, Peng-Sen Chen, and Mao-Chieh Chen, “Effects of the underlayer substrates on copper chemical vapor deposition”, Journal of Vacuum Science Technology , B20(3), (2002).
    [27] D.L. Smith, Thin-Film Deposition Principles&Practice, McGraw -Hill,Inc.(1995).
    [28] E. Kondoh,“Material characterization of Cu(Ti)-polyimide thin film stacks”, Thin Solid Films 359(2000), pp.255-260.
    [29] M.Takeyama, A.Noya, T.Sase, and A. Ohta, Journal of Vacuum Science Technology , B14, (1996), pp674-678.
    [30] Tohru Hara, Kohji Sakata, Akihiro Kawaguchi, and Satoshi Kamijima“Control of Agglomeration on Copper Seed Layer Employed in the Copper Interconnection”Electrochemical and Solid-State Letters, 4 (11),(2001),C81-C84.

    下載圖示 校內:立即公開
    校外:2003-06-30公開
    QR CODE