| 研究生: |
吳政葳 Wu, Cheng-Wei |
|---|---|
| 論文名稱: |
環境因子對豆娘型態特徵的影響:以中華珈蟌為例 Environmental Effects on Morphological Traits in Damselflies: A Case Study of Psolodesmus mandarinus |
| 指導教授: |
許祐薰
Hsu, Yu-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 伯格曼假說 、James rule 、熱黑化假說 、食物資源假說 |
| 外文關鍵詞: | Bergmann’s rule, James rule, Thermal melanism hypothesis, food resource hypothesis |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境因子如溫度等對於昆蟲生活史與型態特徵都有著實質上的影響,不同的溫度可能使動物有著完全不同的選汰適應策略,進而使動物演化出不同的外型。其中,體型被認爲會受溫度等環境因子影響而有梯度變化,隨著環境溫度下降,體型較大的個體會因較好的熱量保存效率而受益,但此梯度分佈可能會因為不同的物種特性以及不同的環境因子而有所差異。本研究旨在深入瞭解豆娘型態特徵與環境因素之間的關聯,並以具有型態多型性、且台灣常見的中華珈蟌(Psolodesmus mandarinus)為研究對象。透過野外個體採集以及整合過去跨研究團隊採集的標本,共測量848隻個體的型態特徵(如翅膀大小和翅膀黑色面積比例)。環境特徵則來自政府氣候與環境資訊開放資料平台,涵蓋雨量、緯度、歸一化植被指標(Normalized Difference Vegetation Index,NDVI)和日照輻射量等環境因子。我們將上述環境變數與每一隻標本的採集座標結合,建立一套型態與環境變數對應的資料庫,以利後續分析其間的關聯性。我們使用線性迴歸模型和路徑分析等方法,分析並探究中華珈蟌的型態特徵是否隨著不同環境因子而有所差異。分析結果顯示中華珈蟌翅膀大小會隨著緯度和溫度增加而增大,但翅膀大小會隨著歸一化植被指標增加而減少。此結果顯示環境因子確實與動物特徵有關聯,並且部分結果符合伯格曼假說之預期結果,但卻不符合伯格曼假說所提出的機制。此外,我們的結果沒有證據支持James rule,且反駁了可利用食物資源假說。另一方面,緯度與日照輻射量對翅膀黑色面積比例有正向且顯著的影響。這並不支持熱黑化假說。本研究的結果表示現今中華珈蟌的外型呈梯度分佈原因錯綜複雜,並非受單一因子調控,而是多個環境因子之間交互作用的結果。
Environmental factors, such as temperature, shape life histories, and morphological traits, lead to diverse adaptive strategies in insects. Body size and other traits typically show progressive changes along environmental gradients, but the mechanisms and patterns can vary across species and ecological contexts. To improve our understanding of the environmental effects on morphological traits and their potential role in divergence, we investigated wing morphology in Psolodesmus mandarinus, a damselfly species distributed in Taiwan. We analyzed 848 specimens, integrating morphological data with environmental factors such as latitude, average temperature, precipitation, solar radiation, and the Normalized Difference Vegetation Index (NDVI) as the indicator of food resources. Through linear regression and path analysis, we assessed the direct and indirect impacts of environmental factors on wing size and wing color. Our findings indicate that temperature positively influences wing size, while the Normalized Difference Vegetation Index (NDVI) has a negative effect. These results are consistent with Bergmann’s rule, although they diverge from its conventional mechanistic explanations. We did not find support for James rule or the food availability hypothesis. Additionally, both latitude and solar radiation were positively correlated with wing color, which conflicts with the prediction of the thermal melanism hypothesis. Overall, these findings reveal the complexity of selection on morphological traits and suggest that the clinal variation observed in P. mandarinus is influenced by an interaction of multiple environmental factors.
Alhajeri, B. H., & Steppan, S. J. Association between climate and body size in rodents: a phylogenetic test of Bergmann’s rule. Mammalian Biology, 81(2), 219-225. 2016 doi:10.1016/j.mambio.2015.12.001
Allaire, J. RStudio: integrated development environment for R. Boston, MA, 770(394), 165-171. 2012
Atkinson, D. Temperature and organism size-a biological law for ectotherms? Advances in Ecological Research, 25, 1-58. 1994 doi:10.1016/S0065-2504(08)60212-3
Batucan Jr, L. S., Hsu, Y.-H., Maliszewski, J. W., Wang, L.-J., & Lin, C.-P. Novel wing display and divergent agonistic behaviors of two incipient Psolodesmus damselflies. The Science of Nature, 108(6), 49. 2021 doi:10.1007/s00114-021-01758-6
Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger studien, 3, 595-708. 1847
Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution, 3(3), 195-211. 1949 doi:10.2307/2405558
Boggs, C. L., & Freeman, K. D. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia, 144(3), 353-361. 2005 doi:10.1007/s00442-005-0076-6
Brakefield, P., & De Jong, P. A steep cline in ladybird melanism has decayed over 25 years: a genetic response to climate change? Heredity, 107(6), 574-578. 2011 doi:10.1038/hdy.2011.49
Çağlar, S. S., Karacaoğlu, Ç., Kuyucu, A. C., & Sağlam, İ. K. Humidity and seasonality drives body size patterns in males of the bush cricket Isophya rizeensis Sevgili, 2003 (Orthoptera: Tettigoniidae: Phaneropterinae). Insect Science, 21(2), 213-226. 2014 doi:10.1111/1744-7917.12027
Cooper, N. W., Sherry, T. W., & Marra, P. P. Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird. Ecology, 96(7), 1933-1942. 2015 doi:10.1890/14-1365.1
Deme, G. G., Liang, X., Okoro, J. O., Bhattarai, P., Sun, B., Malann, Y. D., & Martin, R. A. Female lizards (Eremias argus) reverse Bergmann's rule across altitude. Ecology and Evolution, 13(8), e10393. 2023 doi:10.1002/ece3.10393
Fick, S. E., & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315. 2017 doi:10.1002/joc.5086
Fleming, J. M., & Sheldon, K. S. Temperature and Moisture Interact to Shape Body Size of Appalachian Salamanders Across Elevation. Journal of Biogeography, 52(5), e15095. 2025 doi:10.1111/jbi.15095
Goldner, J. T., & Holland, J. D. Wing morphology of a damselfly exhibits local variation in response to forest fragmentation. Oecologia, 202(2), 369-380. 2023 doi:10.1007/s00442-023-05396-9
Gorb, S., Kesel, A., & Berger, J. Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Arthropod structure & development, 29(2), 129-135. 2000 doi:10.1016/S1467-8039(00)00020-7
Guillermo-Ferreira, R., Bispo, P. C., Appel, E., Kovalev, A., & Gorb, S. N. Structural coloration predicts the outcome of male contests in the Amazonian damselfly Chalcopteryx scintillans (Odonata: Polythoridae). Arthropod structure & development, 53, 100884. 2019 doi:10.1016/j.asd.2019.100884
Hantak, M. M., McLean, B. S., Li, D., & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Communications Biology, 4(1), 972. 2021 doi:10.1038/s42003-021-02505-3
He, J., Tu, J., Yu, J., & Jiang, H. A global assessment of Bergmann's rule in mammals and birds. Global Change Biology, 29(18), 5199-5210. 2023 doi:10.1111/gcb.16860
Healy, K., McNally, L., Ruxton, G. D., Cooper, N., & Jackson, A. L. Metabolic rate and body size are linked with perception of temporal information. Animal behaviour, 86(4), 685-696. 2013 doi:10.1016/j.anbehav.2013.06.018
Helanterä, H., & Sundström, L. Worker reproduction in the ant Formica fusca. Journal of Evolutionary Biology, 18(1), 162-171. 2005 doi:10.1111/j.1420-9101.2004.00777.x
Henry, E., Santini, L., Huijbregts, M. A., & Benítez‐López, A. Unveiling the environmental drivers of intraspecific body size variation in terrestrial vertebrates. Global Ecology and Biogeography, 32(2), 267-280. 2023 doi:10.1111/geb.13621
Hernández-P, R., Benítez, H. A., Ornelas-García, C. P., Correa, M., Suazo, M. J., & Piñero, D. Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions. Biology, 12(6), 766. 2023 doi:10.3390/biology12060766
Huang, S., Saarinen, J. J., Eyres, A., Eronen, J. T., & Fritz, S. A. Mammalian body size evolution was shaped by habitat transitions as an indirect effect of climate change. Global Ecology and Biogeography, 31(12), 2463-2474. 2022 doi:10.1111/geb.13594
Idec, J., Bybee, S., Ware, J., Abbott, J., Ferreira, R. G., Suvorov, A., . . . Belitz, M. Interactions between sexual signaling and wing size drive ecology and evolution of wing colors in Odonata. Scientific reports, 14(1), 25034. 2024 doi:10.1038/s41598-024-73612-4
James, F. C. Geographic size variation in birds and its relationship to climate. Ecology, 51(3), 365-390. 1970 doi:10.2307/1935374
Johnson, D. S., Crowley, C., Longmire, K., Nelson, J., Williams, B., & Wittyngham, S. The fiddler crab, Minuca pugnax, follows Bergmann's rule. Ecology and Evolution, 9(24), 14489-14497. 2019 doi:10.1002/ece3.5883
Johnson, J. V., Finn, C., Guirguis, J., Goodyear, L. E. B., Harvey, L. P., Magee, R., . . . Pincheira-Donoso, D. What drives the evolution of body size in ectotherms? A global analysis across the amphibian tree of life. Global Ecology and Biogeography, 32(8), 1311-1322. 2023 doi:10.1111/geb.13696
Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philosophical Transactions of the Royal Society B, 374(1768), 20180176. 2019 doi:10.1098/rstb.2018.0176
Kennington, W. J., Killeen, J. R., Goldstein, D. B., & Partridge, L. Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution, 57(4), 932-936. 2003 doi:10.1111/j.0014-3820.2003.tb00304.x
Kuitunen, K., Kotiaho, J. S., Luojumäki, M., & Suhonen, J. Selection on size and secondary sexual characters of the damselfly Calopteryx splendens when sympatric with the congener Calopteryx virgo. Canadian Journal of Zoology, 89(1), 1-9. 2011 doi:10.1139/Z10-090
Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., & Chen, W.-B. The Taiwan climate change projection information and adaptation knowledge platform: a decade of climate research. Water, 14(3), 358. 2022 doi:10.3390/w14030358
Lin, S., Chen, Y., Shieh, S.-H., & Yang, P. Patterns of mitochondrial and wing morphological differentiation in Taiwanese populations of Psolodesmus mandarinus McLachlan (Zygoptera: Calopterygidae). Odonatologica, 41(2), 109. 2012
Lin, S., Chen, Y., Shieh, S., & Yang, P. A revision of the status of Psolodesmus mandarinus based on molecular and morphological evidence (Odonata: Calopterygidae). Odonatologica, 43(1/2), 51-66. 2014
Marshall, D. C., & Cooley, J. R. Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13‐year Magicicada neotredecim. Evolution, 54(4), 1313-1325. 2000 doi:10.1111/j.0014-3820.2000.tb00564.x
Mauser, K. M., Baumeyer, J., Eshghi, S., Gorb, S. N., Manfrin, A., & Brühl, C. A. Short-Term Mating Success in Relation to Fluctuating Wing Asymmetry in the Male Azure Damselfly Coenagrion puella. Basic and Applied Ecology, 55-65. 2025 doi:10.1016/j.baae.2025.05.002
Mayr, E. Geographical character gradients and climatic adaptation. Evolution, 10(1), 105-108. 1956 doi:10.2307/2406103
Moore, M., & Martin, R. Intrasexual selection favours an immune‐correlated colour ornament in a dragonfly. Journal of Evolutionary Biology, 29(11), 2256-2265. 2016 doi:10.1111/jeb.12953
Moore, M. P., Lis, C., Gherghel, I., & Martin, R. A. Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecology Letters, 22(3), 437-446. 2019 doi:10.1111/ele.13200
Noh, M. Y., Muthukrishnan, S., Kramer, K. J., & Arakane, Y. Cuticle formation and pigmentation in beetles. Current opinion in insect science, 17, 1-9. 2016 doi:10.1016/j.cois.2016.05.004
Okude, G., & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Current opinion in genetics & development, 69, 14-20. 2021 doi:10.1016/j.gde.2020.12.014
Okuzaki, Y., & Sota, T. Predator size divergence depends on community context. Ecology Letters, 21(7), 1097-1107. 2018 doi:10.1111/ele.12976
Outomuro, D., Adams, D. C., & Johansson, F. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach. BMC evolutionary biology, 13, 1-11. 2013 doi:10.1186/1471-2148-13-118
Outomuro, D., Golab, M. J., Johansson, F., & Sniegula, S. Body and wing size, but not wing shape, vary along a large-scale latitudinal gradient in a damselfly. Scientific reports, 11(1), 18642. 2021 doi:10.1038/s41598-021-97829-9
Outomuro, D., & Johansson, F. The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102(2), 263-274. 2011 doi:10.1111/j.1095-8312.2010.01591.x
Outomuro, D., & Johansson, F. Bird predation selects for wing shape and coloration in a damselfly. Journal of Evolutionary Biology, 28(4), 791-799. 2015 doi:10.1111/jeb.12605
Paolucci, S., Van De Zande, L., & Beukeboom, L. W. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Journal of Evolutionary Biology, 26(4), 705-718. 2013 doi:10.1111/jeb.12113
Parkash, R. Testing the melanism-desiccation hypothesis: A case study in Darwinian evolution. Nature at Work: Ongoing Saga of Evolution, 279-306. 2010 doi:10.1007/978-81-8489-992-4_18
Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., & Kausrud, K. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate research, 46(1), 15-27. 2011 doi:10.3354/cr00936
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510. 2005 doi:10.1016/j.tree.2005.05.011
Pincheira-Donoso, D., Hodgson, D. J., & Tregenza, T. The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards? BMC evolutionary biology, 8, 1-13. 2008 doi:10.1186/1471-2148-8-68
R Core Team, R. R: A language and environment for statistical computing. 2013
Rosa, E., & Saastamoinen, M. Beyond thermal melanism: association of wing melanization with fitness and flight behaviour in a butterfly. Animal behaviour, 167, 275-288. 2020 doi:10.1016/j.anbehav.2020.07.015
Rosenzweig, M. L. The strategy of body size in mammalian carnivores. American Midland Naturalist, 299-315. 1968 doi:10.2307/2423529
Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. 2012 doi:10.18637/jss.v048.i02
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. 2012 doi:10.1038/nmeth.2089
Schreiner, G. D., Duffy, L. A., & Brown, J. M. Thermal response of two sexually dimorphic Calopteryx (Odonata) over an ambient temperature range. Ecology and Evolution, 10(21), 12341-12347. 2020 doi:10.1002/ece3.6864
Sibilia, C. D., Brosko, K. A., Hickling, C. J., Thompson, L. M., Grayson, K. L., & Olson, J. R. Thermal physiology and developmental plasticity of pigmentation in the harlequin bug (Hemiptera: Pentatomidae). Journal of Insect Science, 18(4), 4. 2018 doi: 10.1093/jisesa/iey066
Starr, S. M., & McIntyre, N. E. Effects of Water Temperature Under Projected Climate Change on the Development and Survival of Enallagma civile (Odonata: Coenagrionidae). Environmental Entomology, 49(1), 230-237. 2019 doi:10.1093/ee/nvz138
Stelbrink, P., Pinkert, S., Brunzel, S., Kerr, J., Wheat, C. W., Brandl, R., & Zeuss, D. Colour lightness of butterfly assemblages across North America and Europe. Scientific reports, 9(1), 1760. 2019 doi:10.1038/s41598-018-36761-x
Svensson, E. I., Gómez‐Llano, M., & Waller, J. T. Out of the tropics: Macroevolutionary size trends in an old insect order are shaped by temperature and predators. Journal of Biogeography, 50(3), 489-502. 2023 doi:10.1111/jbi.14544
Trullas, S. C., van Wyk, J. H., & Spotila, J. R. Thermal melanism in ectotherms. Journal of thermal biology, 32(5), 235-245. 2007 doi:10.1016/j.jtherbio.2007.01.013
Vega-Sánchez, Y. M., Mendoza-Cuenca, L., & González-Rodríguez, A. Morphological variation and reproductive isolation in the Hetaerina americana species complex. Scientific reports, 12(1), 10888. 2022 doi:10.1038/s41598-022-14866-8
Virgós, E., Kowalczyk, R., Trua, A., de Marinis, A., Mangas, J. G., Barea‐Azcón, J. M., & Geffen, E. Body size clines in the European badger and the abundant centre hypothesis. Journal of Biogeography, 38(8), 1546-1556. 2011 doi:10.1111/j.1365-2699.2011.02512.x
Vukusic, P., & Sambles, J. R. Photonic structures in biology. Nature, 424(6950), 852-855. 2003 doi:10.1038/nature01941
Watson, M. J., & Kerr, J. T. Climate-Driven Body Size Changes in Birds and Mammals Reveal Environmental Tolerance Limits. Global Change Biology, 31(5), e70241. 2025 doi:10.1111/gcb.70241
Wikelski, M. Evolution of body size in Galapagos marine iguanas. Proceedings of the Royal Society B: Biological Sciences, 272(1576), 1985-1993. 2005 doi:10.1098/rspb.2005.3205
Xue, B., Sartori, P., & Leibler, S. Environment-to-phenotype mapping and adaptation strategies in varying environments. Proceedings of the National Academy of Sciences, 116(28), 13847-13855. 2019 doi:10.1073/pnas.1903232116
Yildirim, Y., Kristensson, D., Outomuro, D., Mikolajewski, D., Rödin Mörch, P., Sniegula, S., & Johansson, F. Phylogeography and phenotypic wing shape variation in a damselfly across populations in Europe. BMC Ecology and Evolution, 24(1), 19. 2024 doi:10.1186/s12862-024-02207-4
陳錦文. Systematic Notes on the Genera Oroletes and Psolodesmus (Odonata). [誌Orolestes與Psolodesmus二屬豆娘之分類(蜻蛉目)]. 臺灣省立博物館季刊, 3(1), 23-32. 1950 doi:10.6532/qjtm.195003_3(1).0003
校內:2030-08-19公開