簡易檢索 / 詳目顯示

研究生: 王子睿
Wang, Tzu-Juei
論文名稱: 矽鍺異質結構金(氧)半場效電晶體之研製
Study of SiGe Heterostructure Metal (Oxide) Semiconductor FETs
指導教授: 張守進
Chang, Shoou-Jinn
吳三連
Wu, San-Lein
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 70
中文關鍵詞: 漸變通道載子侷限能力通道摻雜場效電晶體矽鍺
外文關鍵詞: Graded channel, Carrier confinement, DCFET, SiGe
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用固體源分子束磊晶法(SSMBE)成長兩種矽鍺通道摻雜場效電晶體,一種是均勻通道摻雜場效電晶體,另一種是漸變矽鍺通道均勻摻雜場效電晶體.採用的摻雜源為硼元素.在磊晶薄膜分析方面,我們以二次離子質譜儀來探討硼摻雜層的濃度和各層接面與縱深分佈.

      在實驗方面,這兩種矽鍺異質結構場效電晶體都已成功研製出來,其中漸變矽鍺通道均勻摻雜場效電晶體的特性尤其出色,因為漸變通道會場生一個內建電場,有效的侷限載子在矽鍺通道中,此舉能大大改善元件的特性,其最高互導值為14.2 mS/mm, 而最大汲極電流可達65 mA/mm.

      在另一方面,由於金半場效電晶體的操作電壓範圍受到蕭特基接面特性的限制,所以無法承受過大的閘極電壓.因此,在金屬和半導體之間加入了氧化層可有效的解決這個問題.使用直接光激化學氣相沉積法成長的二氧化矽層,其物理特性非常接近於一般用熱氧化法成長的二氧化矽層,且其電特性在元件的應用上也是可被接受的。而直接光激化學氣相沉積法的優點在於能夠有效的把氘燈(D2)產生的能量直接轉移給反應氣體而不產生熱能。又因為光激化學氣相沉積法的氧化層是在低溫下沉積(<1000℃),因此熱鬆弛也能因而降到最低。
    本論文中,我們利用和金半場效電晶體相同的結構去研製出矽鍺異質結構金氧半場效電晶體,而從實驗結果我們得到不錯的電流電壓特性,以及較大的閘極電壓操作範圍。

      In this these, two p-type SiGe doped-channel field-effect transistors with different Ge profile were grown by solid-source molecular beam epitaxy (SSMBE). Secondary ion mass spectrum (SIMS) was used to verify the Ge profile in Si1-xGex channel.

      Then, the SiGe-based MESFETs with a uniform Ge channel and with a Ge graded-channel were successfully fabricated. The graded variation of the Ge fraction in channel induced built-in field can prevent transconductance from shaping down drastically under forward gate bias and increase the carrier confinement for device operation. It is found that by grading Ge fraction in the channel, the devices exhibit the excellent property not only of higher current density (65 mA/mm) but also enhancement in extrinsic transconductance (14.2 mS/mm) and linear operation range over a wider dynamic range than those of devices with uniform Ge profile for the same integrated Ge dose in SiGe conducting well.

      In addition, MESFETs suffer from a reduced gate voltage swing due to the onset of a significant leakage current across the Schottky gate under forward bias condition. SiGe/Si metal-oxide-semiconductor heterojunction field effect transistors (MOSHFETs) are fabricated with photo-CVD oxide as the insulating layer and compared with SiGe/Si heterostructure MESFETs with similar structure. Photo-CVD oxide is a good candidate for gate dielectrics in SiGe MOSFETs because its low processing temperature can avoid the relaxation of strained SiGe layers and segregation of Ge atoms. From the experimental results, SiGe MOSHFETs with different Ge profile show good FET characteristics.

    Abstract (Chinese) I Abstract (English) III Acknowledgements V Contents VI Figure Captions IX List of Tables XII Chapter 1 Introduction 1 Chapter 2 Characteristics of Si1-xGex Heterostructures 5 2.1 Properties of Si1-xGex Epitaxial Layer 5 2.2 Energy gaps and band structure of SiGe/Si heterostructure 6 2.2.1 Bandgap 6 2.2.2 Band Alignment 7 2.3 Carrier mobility in strained channels 8 2.4 Germanium profile engineering 10 Chapter 3 Fabrication of SiGe Doped-Channel Field-Effect Transistors with Different Ge Profile 11 3.1 Epitaxial Growth of SiGe Strained Layers 11 3.1.1 MBE System Description 11 3.1.2 Epitaxial Growth 13 3.2 The Fabrication of SiGe-based MESFET 14 3.2.1 Mesa Isolation 14 3.2.2 Source / Drain Metallization 14 3.2.3 Schottky Contact 16 3.3 The Fabrication of SiGe MOSHFET 16 3.3.1 Photo-CVD system 17 3.3.2 The growth of SiO2 layer 19 3.3.3 The process of MOSFETs 20 Chapter 4 Characteristics of p-type SiGe Doped-Channel MESFET with Different Ge Profile 21 4.1 Gate-Source Schottky Diode Characteristics 21 4.2 Three-Terminal Current Voltage Characteristics 22 4.2.1 SiGe doped-channel MESFETs with a graded Ge channel (GCFET) 22 4.2.2 SiGe doped-channel MESFETs with a uniform Ge channel (UCFET) 23 4.2.3 The comparison of SiGe doped-channel MESFETs with a uniform Ge channel and with a Ge graded-channel 24 Chapter 5 Characteristics of SiGe/Si Metal- Oxide- Semiconductor Heterostructure Field-Effect Transistors (MOSHFETs) 26 5.1 Comparison of p-type SiGe doped-channel MESFET and MOSHFET with a Ge graded-channel 26 5.2 Comparison of p-type SiGe doped-channel MESFET and MOSHFET with a uniform Ge channel 28 5.3 Comparison of p-type SiGe doped-channel MOSHFETs with a uniform Ge channel and with a Ge graded-channel 29 5.4 Discuss 30 Chapter 6 Conclusions and Future Works 32 6.1 Conclusions 32 6.2 Future Works 33 6.2.1 The study of MESFETs 33 6.2.2 The study of MOSHFETs 33

    [1]Inst. F. Halbleitertechnik, U. S. Breitscheidstr, "Impact of SiGe Heterostructures on Silicon Devices," IEEE Transcations On Electron Devices, Vol.41, No.1, JANUARY 1994.

    [2] J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, and N. B. Feilchenfeld, " Foundation of RF CMOS and SiGe BiCMOS technologies," IBM J. RES. & DEV. VOL.47 ,NO. 2/3, March/May 2003.

    [3] Sophie Verdonckt-Vanderbroek, Emmanuel F. Crabbe, and Bernard S. Meyerson, "SiGe-Channel Heterojunction p-MOSFET’s," IEEE Transcations On Electron Devices, Vol.41, No.1, JANUARY 1994.

    [4] Thomas Hackbarth, Dipl. Ing. Marco Zeuner, and Ulf Konig, "The Future of SiGe," Compound Semiconductor.Net, September 2002.

    [5] B. S. Meyerson, " Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition, " Appl. Phys. Lett., Vol.48, pp.797-799, 1986.

    [6] B. S. Meyerson, " UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applicatioins, " Proceedings of the IEEE, Vol.80, No. 10, 1992.
    [7] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, "GexSi1-x/Si strained-layer supperlattices growth by molecular beam epitaxy, " J. Vac. Sci. Technol., Vol. 53, pp.1586, 1982.

    [8] B. Tillack, D. Kruger, P. Gaworzewski, and G. Ritter, " Atomic layer doping of SiGe by low pressure chemical vapor deposition, " Thin Solid Film, Vol. 294, PP. 15-17, 1997.

    [9] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. Van Ijzendoorn, and P. C. Zalm, " Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD, "Jpn. J. Appl. Phys., Vol. 29, L2307, 1990.

    [10] Yi-Jen Chan, and Ming-Ta Yang, "Device Linearity Improvement by Al0.3Ga0.7As/In0.2Ga0.8As Heterostructure Doped-Channel FET’s , "IEEE Electron Device Letters, Vol.16, No.1, JANUARY 1995.

    [11] H.C. Chiu, S.C. Yang, Y.J. Chan and J.M. Kuo, "High Schottky barrier Al0.5In0.5P/InGaAs doped-channel HFETs with superior microwave power performance, "IEEE Electronics Letters, Vol.36, No.23, NOVEMBER 2000.

    [12] P. Paul Ruden, Michael Shur, and Akintunde I. Akinwande, "AlGaAs /InGaAs/GaAs Quantum Well Doped Channel Heterostructure Field Effect Transistors, " IEEE Transcations on Electron Devices, Vol.37, No.10, October 1990.

    [13] P.W. Chien, S.L. Wu, S.C. Lee, S.J. Chang, and H. Miura, "P-type delta-doped SiGe/Si heterostructure field effect transistors, " IEEE Electronics Letters, Vol.38, No.21, October 2002.

    [14] Sophie Verdonckt-Vanderbroek, Emmanuel F. Crabbe, and Bernard S. Meyerson, " High mobility modulation-doped graded SiGe-channel p-MOSFET’s , " IEEE Transcations On Electron Devices, Vol.41, No.1, JANUARY 1994.

    [15] P.M. Garone, V. Venkataraman, and J.C. Sturm, " Hole confinement in MOS-gated GeSi / Si heterostructures, "IEEE Electron Device Letters, Vol.12, 1991.

    [16] G. F. Niu and G. Ruan, "Threshold Voltage and Inversion Charge Modeling of Graded SiGe-Channel Modulation-Doped p-MOSFET’s, "IEEE Transcations On Electron Devices, Vol.42, No.12, December 1995.

    [17] Wu Lu, Almaz Kuliev, Steven J. Koester, and Xie-Wen Wang, "High Performance 0.1um Gate-Length p-type SiGe MODFET’s and MOS-MODFET’s,"IEEE Transcations On Electron Devices, Vol.47, No.8, August 2000.

    [18] W. Lu, X. W. Wang, R. Hammond, A. Kuliev, and S. Koester, "P-type SiGe Transistors with Low Gate Leakage Using SiN Gate Dielectric," IEEE Electron Device Letters, Vol.20, No.10, October 1999.

    [19] Y. H. Xie, "SiGe field effect transistors," Materials Science and Engineering, 25 (1999) 89-121.

    [20] M. P. Temple, D. J. Paul, Y. T. Tang, and A. M. Waite, "Compressively-strained, buried-channel Si0.7Ge0.3 p-MOSFETs fabricated on SiGe virtual substrates using a 0.25 um CMOS process, "IEEE Trans. Elec. Dev., Vol.X, No.X, JANUARY 2004.

    [21] Douglas Paul, "Silicon Germanium," (http:// www. sp.phy.cam.ac.uk /~dp109/SiGe.html), Cavendish Laboratory, University of Cambridge.

    [22] R. People, "Indirect band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates," Physical Review B, Vol. 32, No.2, July 1985.

    [23] M. A. Herman, "Silicon-Based Heterostructures: Strained-Layer Growth by Molecular Beam Epitaxy," Crystal Research Technology. 34 (1999) 5-6.

    [24] G. L. Bona, F. Meier [Solid State Commun. (USA) vol.55 (1985) p.851]

    [25] E. O. Kane [ J. Phys. Chem. Solids (UK) vol.1 (1956) p. 82 ]

    [26] Masashi Suima, "<100> Strained-SiGe-Channel p-MOSFET with Enhanced Hole Mobility and Lower Parasitic Resistance," FUJITSU Sci. Tech. J., 39, 1, p.78-83, June 2003.

    [27] Xiangdong Chen, K. C. Liu, Q. C. Ouyang, S. K. Jayanarayanan, and S. K. Banerjee, "Hole and Electron Mobility Enhancement in Strained SiGe Vertical MOSFETs, "IEEE Transactions On Electron Devices, Vol.48, No.9, September 2001.

    [28] J. P. Cheng, V. P. Kesan, D. A. Grutzmacher, T. O. Sedgwick [Appl. Phys. Lett. (USA) vol. 64 (1994) p.1681]

    [29] E. Kasper and K. Lyutovich, "Properties of Silicon Germanium and SiGe:Carbon," Published by: INSPEC, The institutioni of Electrical Engineers, London, United Kingdom.

    [30] D. J. Paul, "Silicon-Germanium Strained Layer Materials in Microelectronics," Advanced Materials, 1999, 11, No.3.

    [31] S. K. Chun and K. L. Wang, "Effective mass and mobility of holes in strained Si1-xGex on (001) Si1-yGey substrate," IEEE Transactions Electron Devices, September 1992.

    [32] Sophie Verdonckt-Vandebroek, E. F. Crabbe, B. S. Meyerson, D. L. Ilarame, and J. M. C. Stork, "Design Issues For SiGe Heterojunction FETs," IEEE,1991.

    [33] E. Kasper and H. J. Herzog, "Elastic strain and misfit dislocation density in SiGe films on Si substrate," Thin Solid Films, vol. 44, p.357, 1997.

    [34] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, "GexSi1-x/Si strained-layer supperlattices growth by molecular beam epitaxy," J. Vac. Sci. Technology, vol. A2, p. 436, 1984.

    [35] K. Y. Cheng, Hung-Cheng Lin, and Kevin Meneou, "What is MBE," The MBE Group of the Micro and Nanotechnology Laboratory of The University of Illinois, February 1995.

    [36] Alex Anselm, "MBE Growth," http: // www.ece.utexas.edu /projects /ece/mrc/groups/street_mbe/mbechapter.html, 1997.

    [37] M. Buschbeck, and J. Ramm, "High Speed Silicon-SiGe technologies," http://semiconductors.unaxis.com/en/download/ High%20Speed%20Silicon%20-%20SiGe%20technologies.pdf.

    [38] M. Gluck, T. Hackbarth, U. Konig, A. Haas, G. Hock, and E. Kohn, "High fMAX n-type Si/SiGe MODFET’s," Electron. Letters, Vol.34, No.4, pp.335-337, 1997.
    [39] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Nocera, "High-transconductance n-type Si/SiGe modulation-doped field-effect transistors," IEEE Electron Device Letters, Vol.13, pp.229-231, May 1992.

    [40] Y. Tarui, J. Hidaka and K. Aota, “Low temperature growth of silicon dioxide film by photo-chemical vapor deposition”, Jpn. J. Appl. Phys, L.827, pp.23, 1984

    [41] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-induced deuterium lamp”, Jpn. J. Appl. Phys., L97, pp.23, 1984

    [42] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, "Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6 and Si3H8", J. Chem. Phys, 85, pp. 4876, 1986

    [43] H. Okabe, Photochemistry of small molecules, (John Wiely, New York)

    [44] S. M. Sze, "Semiconductor devices physics and technology," 1985.

    [45] Semiconductor Physics & Devices (second edition) pp. 308.

    下載圖示 校內:2006-07-07公開
    校外:2009-07-07公開
    QR CODE