簡易檢索 / 詳目顯示

研究生: 楊再裕
Yang, Tsai-Yu
論文名稱: 基於次波長金屬光柵結構的偏光式彩色濾光片之設計
Design of Polarized Color Filter Based on Subwavelength Metal Grating
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 彩色濾光片次波長光柵偏光片液晶顯示器
外文關鍵詞: subwavelength grating, polarizer, LCD, color filter
相關次數: 點閱:203下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在論文中將呈現具有偏振片效果次波長金屬光柵彩色濾光片之設計。
    具偏振效果次波長金屬光柵彩色濾光片的幾何參數,利用嚴格耦合波分析和遺傳演算法而得到。
    嚴格耦合波分析精確地解出馬克思威爾方程式或電磁波在光柵裡傳遞現象。
    遺傳算法的優化方法是啟發自然選擇。設計出的光柵的週期大約100nm。
    光柵高度大約在300nm到400nm之間。彩色濾色片光柵之紅光,綠光和藍光之中心波長分別為700nm,546.1nm和435.8nm,這是根據CIE 1931 當年所制定的單光波波長為依據。

    In the thesis, the design of wired-gird polarized subwavelength metal grating which functioned as color filter was presented. The values of geometrical parameters
    of polarized color filter subwavelength grating were obtained by the utilization of rigorous coupled wave analysis (RCWA) and genetic algorithm (GA). The rigorous coupled wave analysis was the exact solution of Maxwell’ equations for light or electromagnetic wave interacting with grating. Genetic algorithm is the optimization method inspired by natural selection. The periods of gratings were around 100nanometer.
    The heights of gratings were from 300nm to 400nm. The central wavelength for the polarized color filter grating were 700nm for red light, 546.1nm for green light and 435.8nm for blue light according to CIE 1931 monochromatic light definition.

    Abstract (Chinese) ........Ⅰ Abstract (English) ........Ⅱ Acknowledgements ........Ⅲ Table of Contents ........Ⅳ List of Tables ........Ⅵ List of Figures ........VII Chapter 1 Introduction.................................1 1.1 The Historical Review and Motivation of the Research.....1 1.2 The Method of the Research .........3 1.3 Overview of Chapters .........3 Chapter 2 Theory........................................5 2.1 Theory of Rigorous coupled wave analysis for gratings....5 2.1.1 Planar diffraction TE polarization................7 2.1.2 Planar diffraction TM polarization...............10 2.2 Concept of Genetic Algorithm.......................14 2.3 Criteria of only zero-order diffraction gratings...17 Chapter 3 Simulation configuration and results.........20 3.1 Geometrical structures of gratings.................21 3.2 Structure I with Case I............................27 3.3 Structure II with Case I...........................32 3.4 Structure III with Case I..........................37 3.5 Structure I with Case II...........................43 3.6 Structure II with Case II..........................48 3.7 Structure III with Case II.........................53 3.8 Analysis of diffraction efficiency of the gratings.58 3.9 Tolerance analysis of the gratings.................67 Chapter 4 Application to New-Type LCD..................73 4.1 Review Novel Liquid Crystal Display...............73 4.2 Review of New-Type LCD projectors.................74 Chapter 5 Conclusions..................................76 5.1 Conclusions ......................................76 Chapter 6 Future Works.................................77 6.1 Future Works .....................................77 Reference............................................. 79 Appendix A.............................................83

    [1] J. K. Wang and Y. L. Lo, “Novel LCD Panel Construct by Diffractive Structures”, Department of Mechanical Engineering, National Cheng Kung University, Taiwan, 7, 181 (2008).
    [2] T. K. GAYLORD and M. G. Moharam, ”Analysis and and application of optical diffraction by gratings”.Proc. IEEE 73, 894 (1985).
    [3] J. P. Auton “Infrared Transmission Polarizers by Photolithography”, Appl. Opt. Vol. 6, No. 6, 1023-1028(1967).
    [4] H. Tamada, T. Doumuki, T. Yamaguchi, and Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-um-wavelength band”, Optics Letters, Vol. 22, No. 6, 419-421 (1997).
    [5] Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
    [6] C. L. Hsu, “Research on silicon-based guided-mode resonance devices and applications”, department of optics and photonics national central university.(2007).
    [7] H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating” Opt. Exp. 15, 15457-15463 (2007).
    [8] K. W. Chien and H. P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Applied Optics, 42, 1830-1834 (2004).
    [9] J. K. Wang and Y. L. Lo, “Novel LCD Panel Construct by Diffractive Structures,” Department of Mechanical Engineering, National Cheng Kung University, Taiwan, 5, 130-134 (2008).
    [10] C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93,1268-1275 (2009).
    [11] M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt Soc. Am. 12 1068-1076 (1995).
    [12] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratins” J OSA, Vol.72, No,10 1385-1392 (1982).
    [13] L. Rayleigh, “On the dynamic theory of gratings”, Proc. R. Soc. Lond. A p399-416 (1907).
    [14] Nicolaas Petrus van der Aa “Sensitivity analysis for gratings reconstruction” ASML, p20 (2007).
    [15] UMRAN S.INAN AZIZ S.INAN, “Electromagnetic waves”, p28, Prentice Hall(2000).
    [16] S. Gasiorowicz, “Quantum physics 3th edition”, w14, wiley (2003).
    [17] Fan Yang, Yahya Rahmat-Samii, “Electromagnetic band gap structures in antenna engineering” p29, Cambridge University Press 1st edition (2008).
    [18] M.G Moharam, D. A. Pommet and E. B.Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach” J OSA Vol. 12, No5 1077-1086(1995).
    [19] L. Li and C. W. Haggans, “Convergence of the coupled wave method for metallic lamellar diffraction gratings”, J OSA Vol.10, No.6 1184-1189 (1993)
    [20] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization” J. Opt. Soc. Am. A Vol.13, No. 3 779-784 (1996).
    [21] K. Y. Chen and C. C. Sun, “次微米週期性結構之嚴格繞射光學模擬與設計” Department of Optics and photonics, National Central University Taiwan, p21 (2005).
    [22] S. T. Cheng, “Strain Profile Synthesis of Fiber Bragg Gratings Spectrum by the Real-Coded Genetic Algorithm ”, p20, Department of Electrical Engineering, National Cheng Kung University, Taiwan(2002).
    [23] H. Holland, “Adaption in Natural and Artificial Systems. Cambridge”, MA: The M.I.T. Press,(1975).
    [24] Davis, L. “Handbook of genetic algorithms”. Van Nostrad Reinhold.
    [25] Beasley D., D. R. Bull, R. R. Martin, An overview of genetic algorithm: part 1: fundamentals. University Computing, (1993).
    [26] Cobb H. G., An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. NRL Memorandum Report 6760, 1990.
    [27] Aleksandar D. Rakic, Aleksandra B. Djurisic, Jovan M. Elazar and Marian L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices” Applied Optics Vol.37 No.22 5271-5283 (1998)
    [28] H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963)
    [29] H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128, 1622–1629 (1962)
    [30] EDWARD D. PALIK, “Handbook of Optical Constant of Solids”, ACADEMIC PRESS, INC,398-399 (1985).
    [31] Wikipedai, “CIE 1931 COLOR SPACE”, Retrieved March 6, 2009 from http://wikipedia.org/wiki/CIE_1931.
    [32] Pochi Yeh and Claire Gu, “Optics of liquid crystal displays”. Wiley-Interscience (1999).
    [33] J. K. Wang, C. Y. Chen, T. Y. Yang, *Y. L. Lo, “Novel LCD Panel Constructed by subwavelength Diffractive Structures”, Submit to 2008 OPT 台灣光電科技研討會.
    [34] C. Y. Chen, Y. L. Lo, “Feasibility study on twisted nematic liquid-crystal cell with two cross-embedded wire-grid polarizers as alignment and electrode for projection displays”, Applied Optics Vol. 48, No. 34 6558-6566 (2009).
    [35] National Taipei University of Technology, department of mechanical engineering, “Projection Display”, Retrieved June 1, 2009, from http://cct.me.ntut.edu.tw/ccteducation/chchting/aiahtm/display/lecture94-2/projector.pdf.

    下載圖示 校內:2015-07-28公開
    校外:2015-07-28公開
    QR CODE