簡易檢索 / 詳目顯示

研究生: 簡弘熙
Chien, Hung-Hsi
論文名稱: 應用於WiMAX/LTE主動式巴倫器或相移器輸入之混頻器設計
Design of Mixers with an input stage of Active-Balun or Phase-Shifter for WiMAX/LTE Application
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 121
中文關鍵詞: 射頻混頻器雙頻相移器
外文關鍵詞: radio frequency, mixer, dual-band, phase shifter
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在射頻接收機前端電路中,混頻器是一個重要的元件,其主要的工作原理為將前級的低雜訊放大器輸出之射頻訊號與壓控震盪器輸出之射頻震盪訊號進行混頻,進而將高頻訊號轉換成低頻提供給後級的數位電路使用。在RFIC電路的設計中,可以發現混頻器的線性度對於整個射頻接收前端電路是相當重要的。

    在本論文中,學生提出數個射頻混頻電路應用在WiMAX以及LTE頻段,總共五個電路設計中可以分為兩個部份,第一個部分為基於一個雙頻共電流混頻器的核心架構下,做的一些特性改善的電路設計。而第二部分則是以系統的觀點來設計的兩個低功率高線性度的創新混頻器設計。第一部分包含以下三個電路設計:應用於WiMAX之主動式巴倫器輸入雙頻共電流混頻器、應用於WiMAX之主動式巴倫器輸出高增益雙頻混頻器、具線性補償機制之創新主動式巴倫器輸入雙頻混頻器。第二部分則包含以下兩個電路設計:應用於LTE系統之創新低功率高線性度相位轉移混頻器以及應用於WiMAX系統之高線性度低功率基極驅動混頻器。

    在應用於WiMAX的主動式巴倫器輸入雙頻共電流混頻器中,學生使用了一主動式巴倫器架構當作雙頻共電流混頻核心架構的輸入級,由前級的加入抑制後級核心架構所產生的雜訊誤差,並且經由主動式巴倫器的特性提高了整體混頻器的增益表現。

    在應用於WiMAX之主動式巴倫器輸出高增益雙頻混頻器中,延續先前的設計,為了降低差動輸出在量測上的誤差以及不方便,除了輸入主動式巴倫器輸入外,在輸出級又加入了一個雙端轉單端的主動式巴倫器輸出架構,而使得此混頻器設計成為一個特化的高增益混頻器架構。

    在具線性補償機制之創新主動式巴倫器輸入雙頻混頻器中,由前兩個設計發現,主動式巴倫器的加入雖然可以使整體的增益上升,但卻會讓線性度相對的下降。因此,在這個電路設計中,學生加入了一個線性補償的機制使得整體的線性度在不影響增益的前提下有顯著的提升。

    在應用於LTE系統之創新低功率高線性度相位轉移混頻器中,學生改善了一已發表之電路設計上的缺陷,進而成為一新的混頻架構設計。在此架構中,為了達到低消耗功率的目的,使用了一相移器輸入的架構,並省略了轉導級以降低電晶體的堆疊,此架構不僅降低了消耗功率並可以使線性度有顯著的提升。

    在應用於WiMAX系統之高線性度低功率基極驅動混頻器中,學生除了省略轉導級外,改採用直接將射頻訊號輸入在基極端以追求更低的功率消耗及更高的線性度,而在輸入端加入了主動式巴倫器用以抵銷省略轉導級所造成的增益下降。

    本篇論文之電路設計是以TSMC 0.18μm CMOS 製程之model進行模擬,並透過CIC申請下線,完成晶片之製作。

    Abstract
    In radio frequency receiver front-end, mixer is an important component. Mixer can mix the RF signal from low noise amplifier with voltage control oscillator than translate high frequency signal into low frequency signal for base-band system. In the course of design of the RFICs, it was found that its linearity performances are important for the performance of receiver.

    In this thesis, several mixer designs using in WiMAX and LTE are presented. Those five circuit designs can divide into two parts. The first part is the improvement design based on a novel concurrent mixer core. It contains three circuits: The dual-band concurrent mixer with active balun for WiMAX applications, the high gain dual-band mixer with IF active balun and the linearity compensation dual-band mixer with active balun. The second parts are two novel circuit designs based on communication system’s. It contains: The low power high linearity phase shifter mixer for LTE application and the low power high linearity bulk driven mixer for WiMAX application.

    In the first circuit design, an active balun is using to the input stage for dual-band concurrent mixer core. Because of the participation of the input active balun, the total conversion gain in mixer will be raised and the noise problem in the mixer core also restrain by the active balun.
    The second design is a high conversion gain dual-band concurrent mixer. In this design, an output differential to single-ended balun was added in the output stage. This output balun not only makes the measurement easier, but also let the mixer have a higher conversion gain response.
    From the first two circuit designs, we can find the active balun although bring the advantage of higher conversion gain, but result in a lower linearity performance. Therefore, the third circuit was designed to make up the linearity blemish when the active balun initiated.
    In the fourth circuit, a novel phase shifter mixer design is proposed. This design reforms the defect of the mixer configuration in the reference paper, and shows a better measurement result to ensure our design indeed improving the circuit’s drawback.
    The last but not the least, a bulk driven mixer with active balun is proposed. The bulk driven design makes a high linearity performance because of the less of the transconductance stage. The participation of active balun solves the problem of deficient in transconductance stage and provides a 5dB conversion gain.

    These circuits are implemented by TSMC 0.18μm CMOS process. These chips have also been fabricated by the support of CIC in Taiwan.

    Abstract (in Chinese) I Abstract (in English) IV Contents VIII List of Tables XII Figure Captions XIII Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Wireless Transceiver Architecture 2 1.3 Thesis Organization 3 Chapter 2 WIRELESS COMMUNICATION SYSTEMS 5 2.1 WiMAX 5 2.2 LTE 11 Chapter 3 THEORIES OF DESIGNING RADIO FREQUENCY MIXERS 21 3.1 Scattering Parameter 21 3.2 Conversion Gain 24 3.3 Nonlinear Characteristics 24 3.3.1 DC offset and Harmonic Distortion 26 3.3.2 Gain Compression 27 3.3.3 Inter Modulation Distortion 28 3.4 Noise Analysis 31 3.4.1 Thermal Noise of Resistor 32 3.4.2 Channel Noise of MOSFET 33 3.4.3 Flicker Noise of MOSFET 34 3.4.4 Single Sideband Noise and Double Sideband Noise 36 3.4.5 Noise Figure 37 3.5 Isolation 38 Chapter 4 DESIGN OF DOWN-CONVERSION MIXERS 41 4.1 Principle of Mixer 41 4.2 Balanced Mixers 42 4.2.1 Single-balanced Mixer 43 4.2.2 Double-balanced Mixer 44 4.3 The Dual-band Concurrent Mixer with Active Balun for WiMAX Applications 46 4.3.1 Design of Active Balun 46 4.3.2 RF Matching Network 50 4.3.3 LO Feeding Network 51 4.3.4 Mixer Core and Output Buffer 51 4.3.5 Layout and Die Photo 52 4.3.6 The Result of Simulation and Measurement 54 4.3.7 Measurement Consideration 59 4.3.8 Summary 61 4.4 The High Gain Dual-band Mixer with IF Active Balun 62 4.4.1 Output Active Balun and Buffer 62 4.4.2 Mixer Core Circuit 63 4.4.3 Layout and Die Photo 64 4.4.4 The Result of Simulation and Measurement 66 4.4.5 Measurement Consideration 72 4.4.6 Summary 73 4.5 The Linearity Compensation Dual-band Mixer with Active Balun 74 4.5.1 Linearity Improvement Core Circuit Design 74 4.5.2 Layout and Die Photo 77 4.5.3 The Result of Simulation and Measurement 79 4.5.4 Measurement Consideration 86 4.5.5 Summary 87 4.6 The Low Power High Linearity Phase Shifter Mixer for LTE Application 88 4.6.1 Phase Shifter Design 88 4.6.2 Mixer Core Circuit and Output Buffers 93 4.6.3 Layout and Die Photo 94 4.6.4 The Result of Simulation and Measurement 96 4.6.5 Measurement Consideration 101 4.6.6 Summary 102 4.7 The Low Power High Linearity Bulk Driven Mixer for WiMAX Application 103 4.7.1 Design of Active Balun and RF Matching Network 103 4.7.2 Design of Mixer Core Circuit 107 4.7.3 Layout of Chip 109 4.7.4 The Result of Simulation 110 4.7.5 Measurement Consideration 114 4.7.6 Summary 116 Chapter 5 CONCLUSION AND FUTURE WORK 117 5.1 Conclusion 117 5.2 Future Work 118 References 119

    [1] http://www.km-airnet.net/kimen_en/airnet/airnet_guide_wimax_en.php
    [2] WiMAX Forum Mobile System Profile Release 1.0 Approved Specification (Revision 1.4.0: 2007-05-02)
    [3] http://grouper.ieee.org/groups/802/16/published.html
    [4] http://en.wikipedia.org/wiki/IEEE_802.16
    [5] Farahani, B.J.; Ismail, M; “WiMAX/WLAN radio receiver architecture for convergence in WMANs” Circuit and System, 2005. Vol. 2, Page(s): 1621-1624, 48th Midwest Symp osium on 7-10 Aug. 2005
    [6] Yijun Zhou; Chee Piew Yoong, Leong Siew Weng, Yin Jee Khoi; Chia Yan Wah, M; Ang Chai Moy, K; Wee Tue Fatt, D.; “A 5GHz dual-mode WiMAX/WLAN direct-conversion receiver”, Proceeding of IEEE International Symposium on Circuits and Systems, ISCAS, pp. 3053-3056, 21-24 May, 2006
    [7] http://en.wikipedia.org/wiki/WiMAX
    [8] "Sprint Eyes WiMax Backhaul". Lightreading.com. Retrieved 2008-03-22.
    [9] "WiMax signals get stronger in India”. eetimes.com. Retrieved 2008-03-22.
    [10] "Overcoming the wire-line bottleneck for 3G wireless services". supercommnews.com. Retrieved 2009-01-03.
    [11] Venkatesan, G.K.; Kulkarni, K.; “Wireless Backhaul for LTE -Requirements, Challenges and Options”. 10.1109/ANTS.2008.4937790 Publication Year: 2008 , Page(s): 1 - 3
    [12] Rohde&Schwarzl “UMTS Long Term Evolution Technology Introduction”
    [13] Motorola Confidential Proprietary “4G Network Migration cdma2000TM to LTE Evolution”
    [14] Ericsson “LTE-an introduction” 284 23-3124 Uen Rev B| June 2009
    [15] Guillermo Gonzalez, “Microwave Transistor Amplifiers Analysis and Design-2ed”, Prentice Hall, 1996
    [16] Behzad Razavi, “RF Microelectronics”, Prentice Hall Communication Engineering and Emerging technologies Series Theodore S. Rappaport, Series Editor.
    [17] Hooman Darabi, Asad A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model” IEEE Transactions on Solid State Circuit, Vol. 35, No. 1, January 2000.
    [18] Tang, S.-K.; Pun, K.-P.; Choy, C.-S.; Chan, C.-F.; Leung, K. N. “A Fully Differential Band-Selective Low-Noise Amplifier for MB-OFDM UWB Receivers”, Circuits and Systems II: Express Briefs, IEEE Transactions on Volume 55, Issue 7, July 2008 Page(s):653 – 657
    [19] By Ferenc Marki, Christopher Marki, Ph.D. “Mixer Basics Primer A Tutorial for RF & Microwave Mixers”
    [20] Mass, Stephen A, “Microwave mixers Artech House, Boston, 1993”
    [21] B. Gilbert, “A Precise Four-Quadrant Multiplier with Sub-nanosecond Response”, IEEE J. Solid State Circuits Vol. SC3, No.4, Dec 1968
    [22] Hiroshi Komurasaki, Member, IEEE, Hisayasu Sato, Nagisa Sasaki, and Takahiro Miki; “A 2-V 1.9-GHz Si Down-Conversion Mixer with an LC Phase Shifter” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 5, MAY 1998
    [23] De-Mao Chen, Zhi-Ming Lin, “A Fully Integrated 3 to 5 GHz CMOS Mixer with Active Balun for UWB Receiver” Circuits and Systems, 2006, APCCAS 2006. IEEE Asia Pacific Conference, Page(s):370-373, Dec. 2006
    [24] Ta-Tao Hsu; Chien-Nan Kuo, “Low voltage 2-mW 6-10.6GHz ultra-wideband CMOS mixer with active balun,” Circuits and Systems, 2006. ISCAS 2006 Proceedings. 2006 IEEE International Symposium May 2006
    [25] Kathiresan, G.; Toumazou, C.; “A Low Voltage Bulk Driven Downconversion Mixer Core” Page(s):598 - 601 vol.2 Digital Object Identifier 10.1109/ISCAS. 1999. 78083. Volume 2, 30 May-2 June 1999

    下載圖示 校內:2013-07-28公開
    校外:2013-07-28公開
    QR CODE