| 研究生: |
蔡承學 Tsai, Cheng-Hsueh |
|---|---|
| 論文名稱: |
結合地下水位與地中變形監測之邊坡依時預警系統研發 Development of a real-time slope warning system with groundwater level and ground deformation monitoring |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 內置式傾斜儀 、地中變形 、邊坡穩定 、即時監測系統 、預警系統 、地錨邊坡 |
| 外文關鍵詞: | In-place inclinometer, Subsurface deformation, Slope stability, Real-time monitoring system, Warning system, Anchored slope |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於台灣地形崎嶇陡峭,加上每年因梅雨季與颱風的侵襲,引發山崩、土石流、水災等,造成無數生命財產的損失,所以對於高風險的邊坡之監測與預警系統的開發尤為重要,本研究以物聯網架構自動監測系統對案例公路邊坡進行監測,運用自主研發之內置式傾斜儀搭配液位感測器建立無線感測系統,透過無線通信技術形成區域監測網路,再由伺服器端統一上傳監測資料至物聯網平台,達到對邊坡全自動化之即時監測目標。結合基於嚴謹力學基礎之數值分析工具對案例邊坡進行分析,選定具地錨穩定之公路邊坡場址,針對不同的地下水位及地錨強度組合對具內支撐地錨邊坡場址進行穩定性及土中變形分析,由分析結果擬訂案例邊坡之於不同時序對應不同監測物理量之客製化預警值。最終由即時監測平台整合監測系統及預警值,建立出完整的邊坡即時監測與預警系統。
Due to the rugged and steep terrain of Taiwan, landslides and floods have caused countless losses of life and property every year during the rainy season and the strike of typhoons. Thus, the development of monitoring and early warning systems for high-risk slopes is particularly important. In this study, the automatic monitoring system based on the IoT framework is used to monitor the anchored highway slope. Use the self-developed in-place inclinometer and liquid level transducer to build a wireless sensor system module. Form the local area monitoring network with wireless communication technology, then upload the monitoring data to the cloud platform to achieve the goal of long-term automatic slope monitoring. Analyze the slope with the numerical analysis tool which is based on rigorous mechanics. While the different combination of groundwater level and anchor strength is considered, analyze the stability and the deformations of the anchored slope. With the result of the analysis, determine the warning value of the different physical quantities according to different time sequence. And finally, establish a real-time slope warning system by integrating the monitoring system and warning value on the cloud platform.
1. 交通部,2015,公路邊坡工程設計規範。
2. 中華民國大地工程學會,2017,山坡地監測準則。
3. 長碩工程,2020,白河段轄區國3二處高風險邊坡 X 級地錨退場邊坡穩定分析報告。
4. 周仕勳,2019,水利力學耦合分析應用於降雨引致土壤邊坡破壞之依時預警,成功大學土木工程學系,博士論文。
5. 張弘杰,2020,公路邊坡擋土支撐系統監測與預警架構發展,成功大學土木工程學系,碩士論文。
6. 邱心彥,2019,考慮土壤結構互制效應之邊坡擋土系統即時監測與預警,成功大學土木工程學系,碩士論文。
7. 洪芯琦,2018,崩積層邊坡滑動即時雲端監測系統研發,成功大學土木工程學系,碩士論文。
8. 張文忠、黃安斌、陳志芳、謝明志、許智超,2016,公路邊坡崩塌監測之無線感測模組研發(2/2),交通部運輸研究所,研究報告
9. 黄安斌、林志平、廖志中,2002,先進邊坡監測系統研發,中國土木水利學會會刊, 第二十九卷第二期,第65-78頁。
10. 黃安斌、何彥得、王建智、吳崑瑋,2016,光纖光柵在地工安全監測之應用,中國土木水利學會會刊,第四十三卷第一期,第48-52頁。
11. 李德河、許琦、周墩堅,1989,泥岩剪力強度特性研究,國科會防災科技研究報告77-70號。
12. 廖洪鈞、張光甫,1998,地錨設計與施工規範之探討,地工技術,第70卷,第75-91頁。
13. .渡正亮,1971,地すベりの型と對策,地すベり,Vol.8, No.1, 1-5,地すベり學會。
14. Abdoun, T., Bennett, V., Danisch, L., Shantz, T., & Jang, D. (2007). Field installation details of a wireless shape-acceleration array system for geotechnical applications.In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007 Vol. 6529, 1123-1132. SPIE.
15. Abdoun, T. (2010). MEMS Based Real-Time Monitoring System for Geotechnical Structures. Indian Geotechnical Conference-2010.
16. British Standards Institution (1989). BS 8081: Code of practice for ground anchorages.
17. Green Gordon E, Mikkelsen P Erik (1988). Deformation Measurements with Inclinometers. Transportation Research Record, vol. 1169, 1-15.
18. Ha, D. W., Kim, J. M., Kim, Y., Park, H. S. (2018). Development and application of a wireless MEMS-based borehole inclinometer for automated measurement of ground movement. Automation in Construction, 87, 49-59.
19. ISO 18674-3:2017(E), Geotechincal investigationand testing-Geotechnical monitoring bu field instrumentation-Part 3-Measurement of displacements across a line: inclinometer.
20. Itasca Consulting Group, Inc. (2011). FLAC-Fast Lagrangian Analysis of Continua, Ver. 7.0 User’s Guide. Minneapolis Itasca.
21. Lollino, G., Arattano, M., & Cuccureddu, M. (2002). The use of the automatic inclinometric system for landslide early warning: the case of Cabella Ligure (North-Western Italy). Physics and Chemistry of the Earth, Parts A/B/C, 27(36), 1545-1550.
22. Saito, M. (1969), Research on Forecasting the Time ef Occurrence of Slope Failure, The Japanese Geotechnical Society, 29-38
23. Uchimura, T., Towhata, I., Anh, T. T. L., Fukuda, J., Bautista, C. J., Wang, L., & Ito, Y. (2009). Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides, 7(3), 351-357.
24. Uhlemann, S., Smith, A., Chambers, J., Dixon, N., Dijkstra, T., Haslam, E., Meldrum, P., Merritt, A., Gunn, D., Mackay, J.(2015). Assessment of ground-based monitoring techniques applied to landslide investigations, Geomorphology, vol. 253, 438-451.
25. Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
26. Varnes, D. J. (1982). Time-deformation relations in creep to failure of earth materials. Proceedings of the seventh southeast asian geotechnical conference, 22-26 November 1982, 107-130.
27. Xu, Q., Yuan, Y., Zeng, Y., Hack, R. (2011). Some new pre-warning criteria for creep slope failure, Science China Technological Sciences, vol. 54, no. 1, 210-220
28. Yoshida, Y., Kashiwai, Y., Murakami, E., Ishida, S., & Hashiguchi, N. (2002). Development of the monitoring system for slope deformations with fiber Bragg grating arrays. In Smart structures and materials 2002: Smart sensor technology and measurement systems, Vol. 4694, pp. 296-303.
校內:2027-09-01公開