| 研究生: |
賴奕丞 Lai, Yi-Cheng |
|---|---|
| 論文名稱: |
水熱法合成鈦酸鈉應用作為多種金屬離子(Sr2+、Co2+、Cs+、Ni2+、Cu2+)吸附劑與吸附特性研究 Hydrothermal derived sodium titanate and its adsorption characteristics for removing Sr2+, Co2+, Cs+, Ni2+ and Cu2+ ions |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 鈦酸鈉 、Sr2+ 、Co2+ 、Cs+ 、Ni2+ 、Cu2+ 、離子交換 |
| 外文關鍵詞: | sodium titanate, Sr2+, adsorption mechanism, ion exchange |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以水熱法製備奈米級鈦酸鈉,應用作為多種金屬離子Sr2+、Co2+、Cs+、Ni2+、Cu2+吸附劑。本研究主要分為四大部分,第一部分探討水熱溫度及前驅物對於水熱合成產物的相組成及形貌、結構變化的影響。實驗結果顯示,水熱溫度會影響產物相組成,在200°C的反應環境下會生成結晶性較高的Na2TinO2n+1 (n= 3, 4, 9)混合相,在110、150 °C的環境中則形成結晶性低的鈦酸鈉水熱中間相。而TiO2前驅物的晶相及粒徑則會影響產物形貌及結構,以5 nm 的amorphous TiO2為前驅物,所得鈦酸鈉產物為奈米纖維狀;使用30 nm的Rutile前驅物所得產物則捲曲為管狀;以25 nm的P25為前驅物,則形成厚度較高的片狀結構水熱產物。
本研究第二部分探討上述不同型態的鈦酸鈉產物,對於Sr2+之批次吸附效果與Sr2+的吸附機制,另加入Co2+、Cs+共存離子以探討離子競爭效應。透過批次吸附實驗結果顯示,本研究所得之鈦酸鈉對於Sr2+最佳飽和吸附量為204.8 mg/g。除此之外,研究結果顯示鈦酸鈉對Sr2+的吸附機制同時含有化學沉澱、化學吸附及離子交換,其中以離子交換為主要離子吸附方式,以Ti-O-Na形式鍵結之Na離子作為主要交換位址,部分殘餘在鈦酸鈉表面之NaOH則會造成Sr(OH)2沈澱。
在吸附動力學實驗結果則表明,鈦酸鈉對Sr2+的吸附模式符合擬二階動力學模式,而吸附過程又可分為兩階段,前期之速率決定步驟由沉澱與化學吸附共同控制,而後時段的速率決定步驟則為離子交換反應。
在離子競爭吸附實驗結果可知,Sr2+、Co2+於單一及三重溶液的環境下的吸附容量總和接近,而二價離子(Sr2+、Co2+)的吸附效率並不受到共存的一價離子(Cs+)影響,推測二價陽離子應佔據相同的吸附位置,且此吸附位址對Co2+具有更高的選擇性吸附效率。
本研究第三部分探討鈦酸鈉於Ni2+、Cu2+的吸附效率及工業廢水的實際應用,鈦酸鈉對於Ni2+、Cu2+的最佳飽和吸附量分別為129.7 mg/g及152. 7 mg/g。以從封裝廠取得含Ni2+與Cu2+之高酸度的工業廢水作為測試對象,研究結果顯示,鈦酸鈉對於Ni2+可到達98 %的去除率,而含Cu2+之工業廢水則僅有21 %左右的去除率,推測 Cu2+ 受到Na+、K+其他離子的競爭影響較為明顯。
本研究第四部份則為鈦酸鈉廢料的脫附及還原,透過酸洗再鹼洗兩步驟可成功將鈦酸鈉廢料還原為可吸附的鈦酸鈉,其中以鹽酸酸洗具有較佳的脱附效率,經酸洗處理後再以氫氧化鈉再生,可使使用過的鈦酸鈉廢料再生,但吸附效率僅有原先的44%。
Sodium titanate was prepared by hydrothermal method using three different starting materials, i.e., amorphous TiO2, Degussa P25, and rutile TiO2. The morphologies of sodium titanate products, where fibrous, tubular and lamellar structures were formed depending on the starting. Sodium titanates in different forms were applied to remove Sr2+ ions from aqueous solution. Their adsorption capacities and mechanisms were investigated. The experimental results presented that the optimal adsorption up to 204.08 mg/g were achieved whereas the adsorption mechanisms were mainly dominated by ion exchange and partially by chemical precipitation.
[1] Macchi, G., Marani, D., Pagano, M., & Bagnuolo, G. (1996). A bench study on lead removal from battery manufacturing wastewater by carbonate precipitation. Water Research, 30(12), 3032-3036.
[2] Mortaheb, H. R., Zolfaghari, A., Mokhtarani, B., Amini, M. H., & Mandanipour, V. (2010). Study on removal of cadmium by hybrid liquid membrane process. Journal of hazardous materials, 177(1-3), 660-667.
[3] Chellammal, S., Raghu, S., Kalaiselvi, P., & Subramanian, G. (2010). Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength COD. Journal of hazardous materials, 180(1-3), 91-97.
[4] Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91-106.
[5] 易發成,錢光人,李玉香,(2004)。礦物材料對核素Sr、Cs的吸附性能研究,中國礦業,13,67-70.
[6] Liang, T. J. (1999). The influence of cation concentration on the sorption of strontium on mordenite. Applied radiation and isotopes, 51(5), 527-532.
[7] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1-3), 336-346.
[8] Gutierrez, M., & Fuentes, H. R. (1991). Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions. Journal of Environmental Radioactivity, 13(4), 271-282.
[9] Gutierrez, M., & Fuentes, H. R. (1993). A Langmuir isotherm-based prediction of competitive sorption of Sr, Cs, and Co in Ca-montmorillonite. Waste Management, 13(4), 327-332.
[10] Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685-695.
[11] Ma, B., Shin, W. S., Oh, S., Park, Y. J., & Choi, S. J. (2010). Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Separation Science and Technology, 45(4), 453-462.
[12] Kasaini, H., Kekana, P. T., Saghti, A. A., & Bolton, K. (2013). Adsorption characteristics of cobalt and nickel on Oxalate-treated activated carbons in sulphate media.
[13] Hafizi, M., Abolghasemi, H., Moradi, M., & Milani, S. A. (2011). Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins. Chinese Journal of Chemical Engineering, 19(2), 267-272.
[14] Hamed, M. M., Rizk, S. E., & Nayl, A. A. (2016). Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin. Particulate Science and Technology, 34(6), 716-724.
[15] Xiong, L., Chen, C., Chen, Q., & Ni, J. (2011). Adsorption of Pb (II) and Cd (II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. Journal of hazardous materials, 189(3), 741-748.
[16] Niu, H. Y., Wang, J. M., Shi, Y. L., Cai, Y. Q., & Wei, F. S. (2009). Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Microporous and Mesoporous Materials, 122(1-3), 28-35.
[17] Li, N., Zhang, L., Chen, Y., Fang, M., Zhang, J., & Wang, H. (2012). Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Advanced Functional Materials, 22(4), 835-841.
[18] Sheng, G., Yang, S., Sheng, J., Zhao, D., & Wang, X. (2011). Influence of solution chemistry on the removal of Ni (II) from aqueous solution to titanate nanotubes. Chemical engineering journal, 168(1), 178-182.
[19] Lee, C. K., Lin, K. S., Wu, C. F., Lyu, M. D., & Lo, C. C. (2008). Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. Journal of Hazardous Materials, 150(3), 494-503.
[20] Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., ... & Ni, J. (2010). Adsorption behavior of methylene blue onto titanate nanotubes. Chemical Engineering Journal, 156(2), 313-320.
[21] Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151(2-3), 682-691.
[22] Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316(2), 298-309.
[23] Dean, J. A. (1999). Lange's handbook of chemistry. New york; London: McGraw-Hill, Inc.
[24] Demirbas, A., Pehlivan, E., Gode, F., Altun, T., & Arslan, G. (2005). Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282(1), 20-25.
[25] Chen, Y., He, M., Wang, C., & Wei, Y. (2014). A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb (II), Cu (II) and Cr (III) ions from aqueous solutions. Journal of Materials Chemistry A, 2(27), 10444-10453.
[26] Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., & Mariani, M. (2013). Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. Journal of Radioanalytical and Nuclear Chemistry, 297(1), 9-18.
[27] Elizondo, N. V., Ballesteros, E., & Kharisov, B. I. (2000). Cleaning of liquid radioactive wastes using natural zeolites. Applied Radiation and Isotopes, 52(1), 27-30.
[28] Mimura, H., & Akiba, K. (1993). Adsorption behavior of cesium and strontium on synthetic zeolite P. Journal of Nuclear Science and Technology, 30(5), 436-443.
[29] Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian ceramic societies, 3(3), 245-250.
[30] Tran, H. L., Kuo, M. S., Yang, W. D., & Huang, Y. C. (2016). Study on modification of NaX Zeolites: the cobalt (II)-exchange kinetics and surface property changes under thermal treatment. Journal of Chemistry, 2016.
[31] Bendenia, S., Marouf-Khelifa, K., Batonneau-Gener, I., Derriche, Z., & Khelifa, A. (2011). Adsorptive properties of X zeolites modified by transition metal cation exchange. Adsorption, 17(2), 361-370.
[32] Merrikhpour, H., & Jalali, M. (2013). Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15(2), 303-316.
[33] Singh, S., Verma, L. K., Sambi, S. S., & Sharma, S. K. (2008, October). Adsorption behaviour of Ni (II) from water onto zeolite X: kinetics and equilibrium studies. In Proceedings of the world congress on engineering and computer science (pp. 22-24).
[34] Hammoudi, H., Bendenia, S., Marouf-Khelifa, K., Marouf, R., Schott, J., & Khelifa, A. (2008). Effect of the binary and ternary exchanges on crystallinity and textural properties of X zeolites. Microporous and mesoporous materials, 113(1-3), 343-351.
[35] Sebastian, J., Peter, S. A., & Jasra, R. V. (2005). Adsorption of nitrogen, oxygen, and argon in cobalt (II)-exchanged zeolite X. Langmuir, 21(24), 11220-11225.
[36] Park, Y., Shin, W., & Choi, S. J. (2012). Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater. Journal of Radioanalytical and Nuclear Chemistry, 292(2), 837-852.
[37] Yang, S., Okada, N., & Nagatsu, M. (2016). The highly effective removal of Cs+ by low turbidity chitosan-grafted magnetic bentonite. Journal of hazardous materials, 301, 8-16.
[38] Shahwan, T., Üzüm, Ç., Eroğlu, A. E., & Lieberwirth, I. (2010). Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Applied Clay Science, 47(3-4), 257-262.
[39] Sandeep, B. N., & Suresha, S. (2013). NPP-modified bentonite for adsorption of Ni (II) from aqueous solution and electroplating wastewater. International Journal of Environmental Sciences, 4(1), 113-122.
[40] Tan, W. S., & Ting, A. S. Y. (2014). Alginate-immobilized bentonite clay: Adsorption efficacy and reusability for Cu (II) removal from aqueous solution. Bioresource technology, 160, 115-118.
[41] Kim, Y., Kim, Y. K., Kim, J. H., Yim, M. S., Harbottle, D., & Lee, J. W. (2018). Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions. Applied Surface Science, 450, 404-412.
[42] Shawabkeh, R. A., Al-Khashman, O. A., Al-Omari, H. S., & Shawabkeh, A. F. (2007). Cobalt and zinc removal from aqueous solution by chemically treated bentonite. The Environmentalist, 27(3), 357-363.
[43] Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136(1), 1-13.
[44] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. science, 287(5453), 622-625.
[45] Liu, W., Wang, T., Borthwick, A. G., Wang, Y., Yin, X., Li, X., & Ni, J. (2013). Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Science of the Total Environment, 456, 171-180.
[46] Liu, W., Sun, W., Han, Y., Ahmad, M., & Ni, J. (2014). Adsorption of Cu (II) and Cd (II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 452, 138-147.
[47] Li, N., Zhang, L., Chen, Y., Tian, Y., & Wang, H. (2011). Adsorption behavior of Cu (II) onto titanate nanofibers prepared by alkali treatment. Journal of hazardous materials, 189(1-2), 265-272.
[48] Yang, D., Zheng, Z., Liu, H., Zhu, H., Ke, X., Xu, Y., ... & Sun, Y. (2008). Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. The Journal of Physical Chemistry C, 112(42), 16275-16280.
[49] Ryu, J., Kim, S., Hong, H. J., Hong, J., Kim, M., Ryu, T., ... & Kim, B. G. (2016). Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: removal vs. recovery. Chemical Engineering Journal, 304, 503-510.
[50] López-Muñoz, M. J., Arencibia, A., Cerro, L., Pascual, R., & Melgar, Á. (2016). Adsorption of Hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Applied Surface Science, 367, 91-100.
[51] Linghu, W., Sun, Y., Yang, H., Chang, K., Sheng, G., Hayat, T., ... & Ma, J. (2017). Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn (II). Journal of Molecular Liquids, 244, 146-153.
[52] Sharaf El-Deen, S. E. A., Ammar, N. S., & Jamil, T. S. (2016). Adsorption behavior of Co (II) and Ni (II) from aqueous solutions onto titanate nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 24(7), 455-466.
[53] Sheng, G., Dong, H., Shen, R., & Li, Y. (2013). Microscopic insights into the temperature-dependent adsorption of Eu (III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chemical engineering journal, 217, 486-494
[54] Du, A. J., Sun, D. D., & Leckie, J. O. (2011). Sequestration of cadmium ions using titanate nanotube. Journal of hazardous materials, 187(1-3), 401-406.
[55] Kochkar, H., Turki, A., Bergaoui, L., Berhault, G., & Ghorbel, A. (2009). Study of Pd (II) adsorption over titanate nanotubes of different diameters. Journal of colloid and interface science, 331(1), 27-31.
[56] Zhang, Y., Jiang, Z., Huang, J., Lim, L. Y., Li, W., Deng, J., ... & Chen, Z. (2015). Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 5(97), 79479-79510.
[57] Gao, T., Fjellvag, H., & Norby, P. (2009). Defect Chemistry of a Zinc-Doped Lepidocrocite Titanate Cs x Ti2− x/2Zn x/2O4 (x= 0.7) and its Protonic Form. Chemistry of Materials, 21(15), 3503-3513.
[58] Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.
[59] Michailowski, A., AlMawlawi, D., Cheng, G., & Moskovits, M. (2001). Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical physics letters, 349(1-2), 1-5.
[60] Liu, S. M., Gan, L. M., Liu, L. H., Zhang, W. D., & Zeng, H. C. (2002). Synthesis of single-crystalline TiO2 nanotubes. Chemistry of materials, 14(3), 1391-1397.
[61] Bae, C., Yoo, H., Kim, S., Lee, K., Kim, J., Sung, M. M., & Shin, H. (2008). Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chemistry of Materials, 20(3), 756-767.
[62] Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331-3334.
[63] Zhao, J., Wang, X., Sun, T., & Li, L. (2007). Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. Journal of alloys and compounds, 434, 792-795.
[64] Zhang, Q., Gao, L., Sun, J., & Zheng, S. (2002). Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chemistry letters, 31(2), 226-227.
[65] Yu, J., Yu, H., Cheng, B., Zhao, X., & Zhang, Q. (2006). Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 182(2), 121-127.
[66] Hoyer, P. (1996). Formation of a titanium dioxide nanotube array. Langmuir, 12(6), 1411-1413.
[67] Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., & Grimes, C. A. (2003). Hydrogen sensing using titania nanotubes. Sensors and Actuators B: Chemical, 93(1-3), 338-344.
[68] Mor, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V., & Grimes, C. A. (2004). A room-temperature TiO 2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research, 19(2), 628-634.
[69] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163.
[70] Bavykin, D. V., & Walsh, F. C. (2009). Elongated titanate nanostructures and their applications. European Journal of Inorganic Chemistry, 2009(8), 977-997.
[71] Bavykin, D. V., Kulak, A. N., & Walsh, F. C. (2010). Metastable nature of titanate nanotubes in an alkaline environment. Crystal growth & design, 10(10), 4421-4427.
[72] Zhang, S., Chen, Q., & Peng, L. M. (2005). Structure and formation of H 2 Ti 3 O 7 nanotubes in an alkali environment. Physical Review B, 71(1), 014104.
[73] Li, M. J., Chi, Z. Y., & Wu, Y. C. (2012). Morphology, chemical composition and phase transformation of hydrothermal derived sodium titanate. Journal of the American Ceramic Society, 95(10), 3297-3304.
[74] Seo, H. K., Kim, G. S., Ansari, S. G., Kim, Y. S., Shin, H. S., Shim, K. H., & Suh, E. K. (2008). A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. Solar Energy Materials and Solar Cells, 92(11), 1533-1539.
[75] Yuan, Z. Y., & Su, B. L. (2004). Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1-3), 173-183.
[76] Nakahira, A., Kubo, T., & Numako, C. (2010). Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorganic chemistry, 49(13), 5845-5852.
[77] Yoshida, R., Suzuki, Y., & Yoshikawa, S. (2005). Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Materials Chemistry and Physics, 91(2-3), 409-416.
[78] Horváth, E., Kukovecz, Á., Kónya, Z., & Kiricsi, I. (2007). Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chemistry of materials, 19(4), 927-931.
[79] Bavykin, D. V., Cressey, B. A., & Walsh, F. C. (2007). Low-temperature synthesis of titanate nanotubes in aqueous KOH. Australian journal of chemistry, 60(2), 95-98.
[80] Lan, Y., Gao, X. P., Zhu, H. Y., Zheng, Z. F., Yan, T. Y., Wu, F., ... & Song, D. Y. (2005). Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials, 15(8), 1310-1318.
[81] Morgado, E., de Abreu, M. A., Moure, G. T., Marinkovic, B. A., Jardim, P. M., & Araujo, A. S. (2007). Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chemistry of materials, 19(4), 665-676.
[82] Li, Q., & Lu, G. (2007). Visible-light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4 (OH) 2. Journal of Molecular Catalysis A: Chemical, 266(1-2), 75-79.
[83] Tsai, C. C., & Teng, H. (2004). Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials, 16(22), 4352-4358.
[84] Wang, W., Varghese, O. K., Paulose, M., Grimes, C. A., Wang, Q., & Dickey, E. C. (2004). A study on the growth and structure of titania nanotubes. Journal of materials research, 19(2), 417-422.
[85] Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
[86] 周書葵,(2012)。放射性廢水處理技術。中國:化學工業出版社。
[87] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
[88] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
[89] Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171-177.
[90] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
[91] Shen, P. S., Tai, Y. C., Chen, P., & Wu, Y. C. (2014). Clean and time-effective synthesis of anatase TiO2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells. Journal of Power Sources, 247, 444-451.
[92] Wang, T., Liu, W., Xiong, L., Xu, N., & Ni, J. (2013). Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes. Chemical Engineering Journal, 215, 366-374.
[93] Zarate, R. A., Fuentes, S., Cabrera, A. L., & Fuenzalida, V. M. (2008). Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process. Journal of Crystal Growth, 310(15), 3630-3637.
[94] Huang, J. Q., Huang, Z., Guo, W., Wang, M. L., Cao, Y. G., & Hong, M. C. (2008). Facile synthesis of titanate nanoflowers by a hydrothermal route. Crystal Growth and Design, 8(7), 2444-2446.
[95] Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., ... & Zhang, Z. (2003). Study on composition, structure and formation process of nanotube Na 2 Ti 2 O 4 (OH) 2. Dalton Transactions, (20), 3898-3901.
[96] 紀佐運. (2010). 起始原料對於二氧化鈦於水熱環境之相轉換與形貌變化之探討. 成功大學資源工程學系,碩士論文, 1-95.
[97] Kolen'ko, Y. V., Kovnir, K. A., Gavrilov, A. I., Garshev, A. V., Frantti, J., Lebedev, O. I., ... & Yoshimura, M. (2006). Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. The Journal of Physical Chemistry B, 110(9), 4030-4038.
[98] Liu, H., Yang, D., Zheng, Z., Ke, X., Waclawik, E., Zhu, H., & Frost, R. L. (2010). A Raman spectroscopic and TEM study on the structural evolution of Na2Ti3O7 during the transition to Na2Ti6O13. Journal of Raman Spectroscopy, 41(10), 1331-1337.
[99] Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 18(21), 2807-2824.
[100] Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in colloid and interface science, 162(1-2), 39-58.
[101] Tsiamtsouri, M. A., Allan, P. K., Pell, A. J., Stratford, J. M., Kim, G., Kerber, R. N., ... & Grey, C. P. (2018). Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability. Chemistry of Materials, 30(5), 1505-1516.
[102] Volgmann, K., Werth, V., Nakhal, S., Lerch, M., Bredow, T., & Heitjans, P. (2017). Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7. Zeitschrift für Physikalische Chemie, 231(7-8), 1243-1262.
[103] Suetake, J., Nosaka, A. Y., Hodouchi, K., Matsubara, H., & Nosaka, Y. (2008). Characteristics of titanate nanotube and the states of the confined sodium ions. The Journal of Physical Chemistry C, 112(47), 18474-18482.
[104] Tan, X., Fang, M., Li, J., Lu, Y., & Wang, X. (2009). Adsorption of Eu (III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. Journal of hazardous materials, 168(1), 458-465.
[105] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
[106] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
[107] Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of hazardous materials, 154(1-3), 407-416.
[108] Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and Purification Technology, 58(1), 224-231.
[109] Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., ... & Ferris, F. G. (2009). Sorption of strontium onto bacteriogenic iron oxides. Environmental science & technology, 43(4), 1008-1014.
[110] Smičikla s, I., Dimović, S., & Plećaš, I. (2007). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35 (1-2), 139-144.
[111] Thiebault, T., Brendle, J., Auge, G., & Limousy, L. (2019). Zwitterionic-surfactant modified LAPONITE® s for removal of ions (Cs+, Sr 2+ and Co 2+) from aqueous solutions as a sustainable recovery method for radionuclides from aqueous wastes. Green Chemistry, 21(18), 5118-5127.
[112] Yin, Y., Hu, J., & Wang, J. (2017). Removal of Sr2+, Co2+, and Cs+ from aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads. Environmental Progress & Sustainable Energy, 36(4), 989-996.
[113] Ararem, A., Bouras, O., & Bouzidi, A. (2013). Batch and continuous fixed-bed column adsorption of Cs+ and Sr 2+ onto montmorillonite–iron oxide composite: comparative and competitive study. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 537-545.
[114] Ho, Y. S., & McKay, G. (1999). Competitive sorption of copper and nickel ions from aqueous solution using peat. Adsorption, 5(4), 409-417.
[115] Rengaraj, S., & Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water research, 36(7), 1783-1793.
[116] Kim, T. Y., An, S. S., Shim, W. G., Lee, J. W., Cho, S. Y., & Kim, J. H. (2015). Adsorption and energetic heterogeneity properties of cesium ions on ion exchange resin. Journal of Industrial and Engineering Chemistry, 27, 260-267.
[117] Chen, Y., & Wang, J. (2012). Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nuclear Engineering and Design, 242, 445-451.
[118] Wang, M., Xu, L., Peng, J., Zhai, M., Li, J., & Wei, G. (2009). Adsorption and desorption of Sr (II) ions in the gels based on polysaccharide derivates. Journal of Hazardous Materials, 171(1-3), 820-826.
[119] Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences, 105(10), 3696-3699.
[120] Valsala, T. P., Joseph, A., Sonar, N. L., Sonavane, M. S., Shah, J. G., Raj, K., & Venugopal, V. (2010). Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. Journal of Nuclear Materials, 404(2), 138-143.
[121] Qi, X. H., Du, K. Z., Feng, M. L., Li, J. R., Du, C. F., Zhang, B., & Huang, X. Y. (2015). A two-dimensionally microporous thiostannate with superior Cs+ and Sr 2+ ion-exchange property. Journal of Materials Chemistry A, 3(10), 5665-5673.
[122] Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016). Competitive adsorption of strontium and cobalt onto tin antimonate. Chemical Engineering Journal, 285, 679-689.
[123] Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016). Removal of strontium (II) and cobalt (II) from acidic solution by manganese antimonate. Chemical Engineering Journal, 302, 733-743.
[124] Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical engineering journal, 222, 41-48.
[125] Lee, C. H., Park, J. M., & Lee, M. G. (2015). Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: Adsorption isotherm and kinetics. J. Environ. Sci. Int, 24(2), 151-162.
[126] Hashemian, S., Saffari, H., & Ragabion, S. (2015). Adsorption of cobalt (II) from aqueous solutions by Fe 3 O 4/bentonite nanocomposite. Water, Air, & Soil Pollution, 226(1), 2212.
[127] Yousef, N. S., Farouq, R., & Hazzaa, R. (2016). Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models. Desalination and Water Treatment, 57(46), 21925-21938.
[128] Khalil, T. E., El-Dissouky, A., & Rizk, S. (2016). Equilibrium and Kinetic studies on Pb2+, Cd2+, Cu2+ and Ni2+ Adsorption from aqueous solution by Resin 2, 2'–(Ethylenedithio) diethanol Immobilized Amberlite XAD-16 (EDTDE-AXAD-16) with Chlorosulphonic acid. Journal of Molecular Liquids, 219, 533-546.
[129] Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., ... & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787-2792.
[130] Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., & Cheng, J. (2015). Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of hazardous materials, 297, 251-260.
[131] Zhu, Q., & Li, Z. (2015). Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chemical Engineering Journal, 281, 69-80.
[132] Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of colloid and interface science, 304(1), 21-28.
[133] Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal of Chemistry, 5(4), 439-446.
[134] Zhang, Y., Dong, J., Guo, F., Shao, Z., & Wu, J. (2018). Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water. Minerals, 8(3), 116.
[135] Lu, X., Wang, F., Li, X. Y., Shih, K., & Zeng, E. Y. (2016). Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite. Industrial & Engineering Chemistry Research, 55(32), 8767-8773.
[136] Chen, Y., Peng, J., Xiao, H., Peng, H., Bu, L., Pan, Z., ... & Li, S. (2017). Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+ and methyl orange removal from water. Applied Surface Science, 420, 773-781.