簡易檢索 / 詳目顯示

研究生: 葉銘凱
Yeh, Ming-Kai
論文名稱: 使用連續時間隨機漫步法於污染傳輸模擬之研究
The study of using continuous time random walk model in contaminant transport modeling
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 連續時間隨機漫步非高斯分佈平流擴散方程
外文關鍵詞: non-Gaussian, continuous time random walk
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現地的土壤種類之空間分佈是不均勻的,而其物理化學特性直接影響到污染物之傳輸行為,因此污染現象經常呈現非高斯之分佈,使用傳統隨機漫步理論並無法適當地模擬現地污染傳輸之行為。本研究使用連續時間隨機漫步模式探討土壤特性影響污染物質之傳輸過程,藉以模擬非高斯分佈的污染傳輸行為。研究中定出連續時間隨機漫步模式所需之參數與傳統平流擴散方程之關係,並且以 Borden場址為例,驗證連續時間隨機漫步模式之可用性,結果顯示連續時間隨機漫步模式配合序率理論之延散係數值可適當地描述溶質傳輸之行為。

    Due to the heterogeneities of physical and chemical properties of porous media, the plumes of contamination are often shown non-Gaussian behaviors. We proposed a numerical model to simulate non-Gaussian distribution by using the continuous time random walk(CTRW) method. The parameters required in the CTRW model are defined by fitting results of CTRW and these of traditional advection-dispersion model. The proposed model is applied to Borden site. Results show that CTRW well describes the non-Gaussian behavior of solute transport and is a better model to simulate the contaminate transport.

    摘要………………………………………………………………I Abstract…………………………………………………………II 誌謝………………………………………………………………III 目錄………………………………………………………………IV 表目錄……………………………………………………………VII 圖目錄……………………………………………………………VIII 符號說明…………………………………………………………XII 第一章 緒論……………………………………………………1 1.1 研究動機與目的……………………………………………1 1.2 前人研究……………………………………………………2 1.3 研究大綱……………………………………………………5 1.4 研究方法與流程……………………………………………6 第二章 污染傳輸理論與模擬…………………………………7 2.1 溶質傳輸……………………………………………………7 2.1.1 平流 ( Advection )……………………………………7 2.1.2 擴散及延散 ( Diffusion and dispersion ) ………8 2.2 延散通量……………………………………………………11 2.3 求解延散係數的方法………………………………………13 2.4 流體運動方法之描述………………………………………14 2.5 尤拉法………………………………………………………15 2.5.1 平流延散方程之推導 ( Eulerian Method )…………15 2.5.2 尤拉數值方法……………………………………………18 2.5.3 一維溶質傳輸模式………………………………………19 2.6 拉氏隨機漫步模式(Lagrangian random-walk model)…23 2.7 選用拉氏隨機漫步模式之原因與探討……………………24 2.8 布朗運動的特性與發展……………………………………28 2.9 擴散係數與平方位移關係…………………………………30 2.10隨機變數……………………………………………………31 2.11連續時間隨機漫步…………………………………………32 2.12宏觀延散係數………………………………………………33 第三章 隨機漫步模式…………………………………………34 3.1 單純隨機漫步………………………………………………34 3.2 連續時間隨機漫步…………………………………………37 3.2.1 CTRW-1……………………………………………………38 3.2.2 CTRW-2……………………………………………………41 3.2.3 Levy motion ……………………………………………43 3.2.4 Levy flight ……………………………………………44 3.3 不同粒子數量時模擬結果之影響…………………………45 3.6 粒子質量的運算……………………………………………47 第四章 連續時間隨機漫步模式之建立與現地應用…………48 4.1 均勻分佈之隨機為移步伐…………………………………48 4.2 常態分佈之隨機為移步伐…………………………………53 4.3 均勻與常態分佈位移步伐隨機漫步模擬結果之比較……55 4.4 停滯機率與遲滯係數的關係………………………………56 4.4.1遲滯速度與平流停滯機率的關係式 ……………………60 4.4.2遲滯速度與延散停滯機率的關係式 ……………………62 4.5 宏觀延散係數………………………………………………64 4.6 場址的模擬與介紹…………………………………………67 4.6.1 場址資料 ……………………………………………67 4.5.2 場址的模擬………………………………………………69 4.7結果與討論 …………………………………………………76 第五章 結論與建議……………………………………………77 參考文獻…………………………………………………………80 附錄………………………………………………………………86 附錄1 CTRW1 ……………………………………………………86 附錄2指數相關函數之縱向延散傳輸 …………………………89 附錄3 Levy motion ……………………………………………92 自述………………………………………………………………98

    1.Anderson, Using models to simulate the movement of contaminants through groundwater flow system. Critical Reviews in Environmental Controls, 9, No. 2, 97-156, 1979.
    2.Bear, Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, 764 pp. 1972.
    3.Bedient, P. B., H. S. Rifai, and G. J. Newell, Ground Water Contaminant,Prentice Hall, Englewood Cliffs, New Jersey 07632, 1994
    4.Benson, D. A., S. W. Wheatcraft, and Mark M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1412, 2000.
    5.Benson, D. A., S. W. Wheatcraft, and Mark M. Meerschaert, The fractional-order governing equation of Levy motion, Water Resour. Res., 36, 1413-1423, 2000.
    6.Berkowitz, B., and H. Scher, On characterization of anomalous dispersion in porous and fractured media, Water Resour. Res., 31, 1461-1466., 1995.
    7.Berkowitz, B., G. Kosakowski, G. Margolin, and H. Scher, Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media, Ground Water, 35, 593-604, 2001.
    8.Bijeljic, B., and M. J. Blunt, pore-scale modeling and continuous time random walk analysis of dispersion in porous media, Water Resour. Res., 42, W01202, doi:10.1029/2005WR004578, 2006.
    9.Cortis, A., and C. Knudby, A continuous time random walk approach to transient flow in heterogeneous porous media, Water Resour. Res., 42, W10201, doi:10.1029/2006WR005227, 2006.
    10.Costa, M., and J. S. Ferreira, Discrete particle distribution model for advection-diffusion transport, Journal of Hydraulic Engineering, 126, No. 7, 525-532, 2000.
    11.Dentz, M., A. Cortis, H. Scher, and B. Berkowitz, Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport, Adv. Water Resour., 27, 155-173., 2004.
    12.Dagan. G., Statistical theory of ground water flow and transport: Pore to laboratory, laboratory to formation and formation to regional scale. Water Resour. Res., 22, No. 9, 120S-134S, 1986.
    13.Dagan, G., Theory of solute transport in water. Annual Reviews of Fluid Mechanics, 19, 183-215, 1987.
    14.Dagan, G., Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour. Res., 24, No. 9, 1491-1500, 1988.
    15.Dagan, G., Flow and Transport in Porous Formations, Springer-Verlag, New York, 465 pp, 1989,
    16.Dagan, G., and S. P. Neuman., Subsurface Flow and Transport : The Stochastic Approach, Cambridge Univ. Press, New York, 1997.
    17.Deng, F.-W. and J. H. Cushman, Higher-Order Correction to the Flow Velocity Covariance Tensor, Revisited, Water Resour. Res., 34(1), 103-106, 1998.
    18.Fetter, C. W., Jr., The concept of safe groundwater yield in coastal aquifers. Water Resources Bulletin, 8, No. 5, 1173-76, 1972.
    19.Fetter, C. W., Jr., Applied Hydrogeology. 3d ed. New York: Prentice Hall, Inc. 691 P, 1994.
    20.Fetter, C. W., Contaminant Hydrogeology, Prentice Hall, Upper Saddle River, New Jersey 07458, 1999.
    21.Freeze, R. Allen, and John A. Cherry., Groundwater. Englewood Cliffs, NJ.:Prentice Hall, 604 PP, 1979.
    22.Fried, J. J., Groundwater Pollution, Elsevier Scientific, Amsterdam, 1975.
    23.Gelhar, L. W., Stochastic subsurface hydrology from theory to applications. Water Resour. Res., 22, No. 9, 135S-145S, 1986.
    24.Gelhar, L. W., and C. L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res., 19, No. 1, 161-180, 1983.
    25.Gelhar, L. W., A. L. Gutjahr, and R. L. Naff, Stochastic analysis of macrodispersion in a stratified aquifer. Water Resour. Res., 15, No. 6, 1387-1391, 1979.
    26.Gelhar, L. W., Stochastic Subsurface Hydrology, Prentice Hall, New Jersey, 1993.
    27.Hsu, K.-C., D. Zhang, and S. P. Neuman, Higher Oeder Effects on Flow and Transport in Randomly Heterogeneous Media, Water Resour. Res., 32(3), 571-582. 1996.
    28.Hsu, K.-C., The influence of the log-conductivity autocovariance structure on macrodispersion coefficients, Journal of Contaminant Hydrology, 65, 65-77, 2003.
    29.Lantz, R, B., Quantitative evaluation of numerical diffusion, Petrol Eng J, 11(3), 315-320, 1971.
    30.Mackay, D. M., D. L. Freyberg, P. V. Roberts, and J. A. Cherry, A natural gradient experiment on solute transport in a sand aquifer, Approach and overview of plume movement. Water Resour. Res., 22, No. 13, 2017-2029, 1986.
    31.Margolin, G., M. Dentz, and B. Berkowitz, Continuous time random walk and multirate mass transfer modeling of sorption, Chemical Physics, 295, 71-80, 2003.
    32.Metzler, R., and J. Klafter., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1-77, 2000.
    33.Neuman, S. P., C. L. Winter, and C. N. Newman, Stochastic theory of field-scale Fickian dispersion in anisotropic porous media. Water Resour. Res., 23, No. 3, 453-466, 1987.
    34.Ogata and Akio, Theory of dispersion in a granular medium. U.S. Geological Survey Professional Paper 411-I, 1970.
    35.Rangarajan, G., and M. Ding, First passage time problem for biased continuous-time random walks, Advanced Scientific Research, 8, 139-145, 2000.
    36.Roberts, P. V., M. N. Goltz., and D. M. Mackay., A natural gradient experiment on solute transport in a sand aquifer retardation estimates and mass balances for organic solutes, Water Resour. Res., 22, 2047-2058, 1986.
    37.Samorodnitsky, G., and M. S. Taqqu., Stable non-gaussian random processes, Chapman and Hall, New York London, 1994.
    38.Scher, H., M. F. Shlesinger, and John T. Bendler, time-scale invariance in transport and relaxation, Physics Today, 26-34, 1991.
    39.Schwartz, F. W., and H. Zhang, Fundamentals of ground water, John Wiley and Sons, Inc., 2003.
    40.Smith, L., and F. W. Schwartz, An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resour. Res., 20, No. 10:1867-1875, 1984.
    41.Sokolov, I. M., J. Klafter, and A. Blumn, Fractional Kinetics, Physics Today, 48-54, 2002.
    42.Tonina, D., and A. Bellin, Effects of pore scale dispersion, degree of heterogeneity, sampling size and source volume on the concentration moments of conservative solutes in heterogeneous formations, Adv. Water Resour., 23, 1-46, 2007.
    43.Yoon, J. S., J. T. Germaine, and P. J. Culligan, Visualization of particle behavior with a porous medium: Mechanisms for particle filtration retardation during downward transport, Water Resour. Res., 42, W06417, doi:10.1029/2004WR003660, 2006.
    44.Zheng, C. and G. D. Bennett, Applied contaminant transport modeling: theory and practice, John Wiley and Sons, Inc., New York. 2002.
    45.Zhang, H., T. Harter, and B. Sivakumar, Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields, Water Resour. Res., 42, W06403, doi: 10.1029/2004WR003808, 2006.
    46.楊哲一、陳冠志與徐國錦,2004,Levy-stable統計分佈是否存在於自然環境資料?-以濁水溪沖積扇地球物理井測資料為例,台灣水利季刊,12月,第五十二卷,第四期
    47.陳仁昀,2004,植被情況下紊流邊界層的熱擴散現象,國立台灣科技大學機械工程系,碩士論文
    48.梁鳳文,2005,以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散,國立中央大學土木工程研究所,碩士論文
    49.陳崇希與李國敏,1995年5月,地下水溶質轉移理論與模型,中國地質大學出版社
    50.余化龍,2002年,應用隨機漫步法與序率分析於地下水溶性污染傳輸,國立台灣大學,生物環境系統工程學,碩士論文
    51.楊哲一,2005,地球物理井測之統計特性分析與隨機場之建構,國立成功大學資源工程系,碩士論文

    下載圖示 校內:立即公開
    校外:2007-07-31公開
    QR CODE