| 研究生: |
鍾明錚 Chung, Ming-Cheng |
|---|---|
| 論文名稱: |
多重耦合雙頻濾波器之設計 Dual-Band Filter Design with Multiple Coupling Structures |
| 指導教授: |
蔡智明
Tsai, Chih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 微波 、雙頻 、濾波器 、平衡非平衡轉換器 |
| 外文關鍵詞: | Microwave, Dual-band, Filter, Balun |
| 相關次數: | 點閱:75 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主要目地是將研製平面多重耦合雙頻帶濾波器所得到之心得加以歸納,整理出設計此類雙頻帶濾波器時,所須遵循的電路設計準則。並且將各式多重耦合結構依其諧振條件與饋入方式的不同加以整理,並針對實現在真實電路上的不同極限,經詳盡的運算後列表整理,以提供往後設計及製作相關電路時的參考資料。
本論文是由平面耦合濾波器的基本耦合結構開始,採用漸進的方式,先討論其相關電場性、磁場性與電磁場混合性耦合的部分,接著再探討多重耦合的特殊型式,延伸利用在雙頻帶濾波器的設計中。利用諧振器間的多重耦合機制,使其能同時滿足雙頻諧振之特性又能同時達到兩個頻帶所需之耦合量的情形下,做詳細的探討。最後再利用所需滿足的諧振器負載品質因素之條件,得到 阻抗匹配的饋入方法,使其訊號連接方式更為簡便,能有效的符合電路體積縮小化之要求,最後實作出此類雙頻帶濾波器。
在無線通訊系統前端,常需要三種被動元件,其一為收發切換器,另一個為帶通濾波器,最後是能將非平衡式訊號與平衡式訊號作轉換的Balun。本論文的最後,是探討如何使耦合帶通濾波器的構成組件,同時能夠包含有Balun的基本特性,那麼設計出的雙頻帶濾波器便能同時具有Balun的功能。此結果對於現今通訊電路逐漸走向輕薄短小化的趨勢下具有相當大的意義。
In recent years, dual-band wireless LAN and portable telephones become quite popular due to the need of wireless mobile communications. Dual-band filters become key components in the front end of these communication systems and have been studied in several literatures.
In this thesis, we used multiple coupling mechanism to design a planar dual-band filter which has better performance and the feed-in structures are more compact. Lately, stepped-impedance transmission-line sections are used in dual-band filter design, because they have the dual-band property and their harmonic frequencies are tunable. It is found that dual-band filter realized by synchronously tuned coupled stepped-impedance resonator circuits have all the needed of proposed dual-band resonators and coupling coefficient between resonators. However multiple coupling structures are also required to establish matching networks at the input and output stage. Therefore, feed-in point is also found by the external quality factors of the input and output resonators, for both passbands.
The design procedure of dual-band filters has been verified by several design examples. Also the results have been summarized as design guide rules which could be followed for similar work in the future. In the last part of this thesis, multiple coupling structures is also applied to the design of balun filter, which is the combination of bandpass filter and balun at the front end of wireless communication system. Thus, the whole system block could be smaller and cheaper.
參考文獻
[1.1] H. Ozaki and J. Ishii, “Synthesis of a class of
strip-line filters,” IRE Trans. Circuit Theory,
vol. 5, pp. 104-109, June 1958.
[1.2] S. B. Cohn, “Parallel-coupled transmission-line
-resonator filters,” IRE Trans. Microwave Theory
Tech., vol. MTT-6, pp. 223-231, Apr. 1958.
[1.3] G. L. Matthaei, “Interdigital band-pass
filters,”IRE Trans. Microwave Theory Tech.,
vol. MTT-10, pp. 479-491, Nov. 1962.
[1.4] R. J. Wenzel, “Exact theory of interdigital
band-pass filters and related coupled
structures,” IEEE Trans. Microwave Theory
Tech., vol. MTT-13, pp. 559-575, Sep. 1965.
[1.5] G. L. Matthaei, “Comb-line band-pass filters
of narrow or moderate bandwidth,” Microwave J.,
vol. 6, pp. 82-91, Aug. 1963.
[1.6] E. G. Cristal and S. Frankel, “Hairpin-line
and hybrid hairpin-line/half-wave parallel-
coupled-line filters,” IEEE Trans. Microwave
Theory Tech., vol. MTT-20, pp. 719-728,
Nov. 1972.
[1.7] M. Makimoto and S. Yamashita, “Bandpass
filters using parallel coupled stripline
stepped impedance resonators,” IEEE Trans.
Microwave Theory Tech., vol. MTT-28,
pp. 1413-1417, Dec. 1980.
[1.8] J. -T. Kuo and H. -S. Cheng, “Design of
quasi-elliptic function filters with a
dual-pssband response,” IEEE Microwave
and Wireless Components Lett., vol. 14,
pp. 472-474, Oct. 2004.
[2.1] H. Miyake, S. Kitazawa, T. Ishizaki,
T. Yamada, and Y. Nagatomi, “A miniaturized
monolithic dual band filter using ceramic
lamination technique for dual mode portable
telephones,” in IEEE MTT-S Int. Microwave
Symp. Dig., vol. 2, 1997, pp. 789-792.
[2.2] L. -C. Tsai and C. -W. Hsue, “Dual-band
bandpass filters using equal-length
coupled-serial shunted lines and Z-transform
technique,” IEEE Trans. Microwave Theory
Tech., vol. MTT-52, pp. 1111-1117, Apr. 2004.
[2.3] C. Quendo, E. Rius, and C. Person, “An
original topology of dual-band filter with
transmission zeros,” in IEEE MTT-S Int.
Microwave Symp. Dig., vol. 2, 2003,
pp. 1093-1096.
[2.4] C. -M. Tsai, H. -M. Lee, and C. -C Tsai,
"Planar filter design with fully controllable
second passband," IEEE Trans. Microwave Theory
and Tech., pp. 3429-3439, Nov. 2005.
[2.5] H. -M. Lee, and C. -M. Tsai, " Dual-band
filter design with flexible passband frequency
and bandwidth selections," IEEE Trans.
Microwave Theory and Tech., pp. 1002-1009,
May 2007.
[2.6] J. -T. Kuo and H. -S. Cheng, “Design of
quasi-elliptic function filters with a
dual-pssband response,” IEEE Microwave and
Wireless Components Lett., vol. 14, pp. 472-474,
Oct. 2004.
[2.7] H. -M. Lee, C. -R. Chen, C. -C. Tsai,
and C. -M. Tsai, “Dual-band coupling and
feed structure for microstrip filter design,”
in IEEE MTT-S Int. Microwave Symp. Dig.,
vol. 3, 2004, pp. 1971-1974.
[2.8] International Telephone and Telegraph Corp.:
Reference Data for Radio Engineers, 6th Ed.,
Howard W. Sams Co., Inc., pp. 8-24~8-28.
[2.9] J. S. Wong, “Microstrip tapped-line filter
design,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-27, pp. 44-50, Jan. 1979.
[2.10] J. S. Hong and M. J. Lancaster, “Couplings
of microstrip square open-loop resonators for
cross-coupled planar microwave filters,”
IEEE Trans. Microwave Theory Tech., vol. 44,
pp. 2099-2109, Dec. 1996.
[2.11] A. E. Atia and A. E. Williams, “Narrow-bandpass
waveguide filters,” IEEE Trans. Microwave Theory
Tech., vol. MTT-20, pp. 258-265, April 1972.
[2.12] A. E. Atia, A. E. Williams, and R. W. Newcomb,
“Narrow-band multiple-coupled cavity synthesis,”
IEEE Trans. Circ. Sys., vol. CAS-21, pp. 649-655,
Sept. 1974.
[2.13] Sheng-Yuan Lee and Chih-Ming Tsai, “New
cross-coupled filter design using improved
hairpin resonators,” IEEE Trans. Microwave
Theory and Techniques, vol. 48, no. 12,
pp. 2482-2490, Dec. 2000.
[2.14] Principles of Microwave Circuits,
C. G. Montgomery, R. H. Dicke, and
E. M. Purcell, McGraw-Hill Book Co.,
Inc., 1948, pp. 230.
[4.1] N. Marchand, “Transmission lines conversion
transformers,” Electronics, vol. 17, no. 12,
pp. 142-145, Dec. 1942.
[4.2] W. K. Roberts, “A new wide-band balun,”
Proc. IRE, vol. 45, pp. 1628-1631, Dec. 1957.
[4.3] J. W. McLaughlin, D. A. Dunn, and R. W. Grow,
“A wide-band balun,” IRE Trans. on Microwave
Theory and Techniques, vol. 6, pp.314-316,
July 1958.
[4.4] G. Oltman, “The Compensated balun,” IEEE Trans.
Microwave Theory Tech., vol. 14, no3, pp. 112-119,
March 1966.
[4.5] R. C. Johnson and H. Jasik, Antenna Engineering
Handbook, McGraw-Hill, 1984, second edition,
pp.43.23~43.27.
[4.6] C. M. Tsai and K. C. Gupta, “A generalized
model for coupled lines and its applications
to two-layer planar circuits,” IEEE Trans.
Microwave Theory Tech., vol. 40, pp. 2190–2198,
Dec. 1992.
[4.7] C. M. Tsai and K. C. Gupta, “CAD procedures for
planar re-entrant type couplers and three-line
baluns,” in IEEE MTT-S Int. Microwave Symp. Dig.,
1993, pp. 1013–1016.
[4.8] C. S. Cho and K. C. Gupta, “A new design
procedure for single-layer and two-layer
three-line baluns,” IEEE Trans. Microwave
Theory Tech., vol. 46, no. 12, pp. 2514–2519,
Dec. 1998.
[4.9] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau,
P. R. Smith, L. Ahlquist, and D. P. Kossives,
“Design and characterization of multilayer
spiral transmission-line baluns,” IEEE Trans.
Microwwave Theory Tech., vol. 47, no. 2,
pp. 1841–1847, Sep. 1999.
[4.10] K. S. Ang and I. D. Robertson, “Analysis and
design of impedance transforming planar Marchand
baluns,” IEEE Trans. Microwave Theory Tech.,
vol. 49, no. 2, pp. 402–406, Feb. 2001.
[4.11] M. Chongcheawchamnan, C. Y. Ng, K. Bandudej,
A. Worapishet, and I. D. Robertson,
“On miniaturization isolation network of an
all-ports matched impedance-transforming Marchand
balun,” IEEE Microwave Wireless Compon. Lett.,
vol. 13, no. 7, pp. 281–283, Jul. 2003.
[4.12] Bockelman, D. E., and W. R. Eisenstadt,
“Pure-mode network analyzer for on-wafer
measurements of mix-mode S parameters of
differential circuits,” IEEE Trans. On
Microwave Theory and Techniques, Vol. 45,
No. 7, July 1997, pp.1071-1077.
[4.13] Bockelman, D. E., and W. R. Eisenstadt,
“Combined differential and common-mode analysis
of power splitters and combiners,” IEEE Trans.
On Microwave Theory and Techniques, Vol. 43,
No. 11, Part 4, November 1995, pp.2627-2632.
[4.14] P. Rizzi, Microwave Engineering, Passive
Circuits, Englewood Cliffs, NJ: Prentice-Hall,
1988, pp. 541-548.
[5.1] R. J. Wenzel, “Exact design of TEM microwave
networks using quarter-wave lines,” IEEE Trans.
Microwave Theory Tech., vol. MTT-12, pp. 94-111,
Jan. 1964.
[5.2] J. A. G. Malherbe, Microwave Transmission Line
Filters, Dedham, MA: Artech House, 1979.
[5.3] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter,
Impedance-Matching Networks, and Coupling Structures, Norwood, MA:
Artech House, 1980, ch. 4.