簡易檢索 / 詳目顯示

研究生: 莊佳樺
Chuang, Chia-Hua
論文名稱: 複材機翼空氣彈性力學分析
Aeroelastic Analysis of composite wings
指導教授: 胡潛濱
Hwu, Chyan-Bin
共同指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 55
中文關鍵詞: 顫振發散複材機翼纖維排向Nastran
外文關鍵詞: flutter, divergence, composite wing, fiber arrangement, Nastran
相關次數: 點閱:158下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文考慮具厚度變化的複合材料夾心板模型以取代機翼結構,並利用Nastran有限元素軟體配合SolidWorks對該模型進行建模,然後採用Nastran空氣彈性模組進行顫振與發散分析。文中探討4疊層之複材疊層板的疊層配置與顫振或發散速度的關係,角度僅考慮90, -45, 45, 0四種角度且可重複,疊層排序則為任意排列組合。文中除了任意排列組合的疊層排序外將新增不同限制條件,如角度不重複、角度至多重複2, 3次、角度必須重複2, 3次等。結果顯示在特定纖維角度下會有較佳的顫振與發散結果。

    This paper considers a composite sandwich beam which has variable thickness of cross section to replace complicated wing structure. The model is created by Nastran and SolidWorks and simulated by Nastran’s aeroelasticity module in order to get the flutter and divergence speed. This paper will discuss the relation between flutter or divergence and the composite arrangement which has 4 layers. The fiber angle here only considers 4 angles including 90, -45, 45, 0 which allow angle repeats and the arrangement are arbitrary permutation. The arrangement will apply different constraints like inadmissible repeat angle in order to simply analyze the data. The result show that composite wing has their best or worst fiber arrangement for flutter or divergence.

    摘要 I ABSTRACT II 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 1 第二章 複材機翼結構模型 3 2.1 複材機翼模型基本假設 3 2.1.1 複材夾心板基本假設 4 2.1.2 機翼結構等效假設 4 2.2 空氣彈性力學數值方法 5 2.2.1 動態顫振(Fluttr) 5 2.2.2 靜態發散(Divergenc) 6 第三章 空氣彈性力學數值模擬軟體 7 3.1 模擬軟體簡介 7 3.1.1 Patran 7 3.1.2 Nastran 8 3.2 模擬軟體範例 10 3.2.1 Patran範例 10 3.2.2 Nastran範例與檔案內容 22 3.3 模擬軟體檔案解讀 26 3.3.1 各種副檔名用途 26 3.3.2 Patran範例檔案內容 26 第四章 結果與討論 28 4.1 機翼模型驗證 28 4.2 氣彈問題纖維排向配置 31 第五章 結論與未來建議 42 5.1 結論 42 5.2 未來工作與建議 42 參考文獻 43 附錄 44

    [1] N. D. Ham, M. I. Young, “Limit cycle torsional motion of helicopter blades due to stall”, Journal of Sound and Vibration, vol 4, Issue 3, pp. 431-432, 1966
    [2] Wilmer H. Reed, “Propeller-rotor whirl flutter: A state-of-the-art review”, Journal of Sound and Vibration, vol 4, Issue 3, pp. 526-530, 1966
    [3] K. N. Koo, I. Lee, “Aeroelastic behavior of a composite plate wing with structural damping”, Computers & Structures, vol 50, Issue 2, pp. 167-176, 1994
    [4] B. V. Vijaya, S. Durvasula, “Supersonic flutter of composite skin panels of repeated-sublaminate layup”, Computers & Structures, vol 41, Issue 2, pp. 121-135, 1998
    [5] Hwu, C.; Tsai, Z. S. 2002 “Aeroelastic divergence of stiffened composite multicell wing structures”, Journal of Aircraft, vol.39, no. 2, pp.242-251., 2002
    [6] M. Kameyama, H. Fukunaga, “Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters”, Computers and Structures, vol 85, pp.213-224 , 2007
    [7] H. Ghiasi, D. Pasini, L. Lessard, “Optimum stacking sequence design of composite materials Part I: Constant stiffness design”, Composite Structures, vol 90, pp.1-11 , 2009
    [8] H. Ghiasi, K. Fayazbakhsh, D. Pasini, L. Lessard, “Optimum stacking sequence design of composite materials Part II: Variable stiffness design”, vol 93, pp.1-13 , 2010
    [9] H. Haddadpour, Z. Zamani, “Curvilinear fiber optimization tools for aeroelastic design of composite wings”, Journal of Fluids and Structures, vol 33, pp. 180-190, 2012
    [10] Z. Wang, Z. Wan, Rainer M.J. Groh, X. Wang, “Aeroelastic and local buckling optimisation of a variable-angle-tow composite wing-box structure”, Composite Structures, vol 258, 2021
    [11] “Aeroelastic analysis user’s guide”, MSC. Nastran Version 68, MSC. Software Corporation.
    [12] “Quick Reference Guide”, MSC. Nastran, MSC. Software Corporation.
    [13] Bryan E., Jose A., Rivera Jr., and Moses G. “An Experimental Study of Tip Shape Effects on the Flutter of Aft-Swept, Flat-Plate Win”, NASA Technical Memorandum 4180, 1990
    [14] Hwu C., “Anisotropic elastic plates” Springer, New York, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE