| 研究生: |
郭文凱 Kuo, Wen-kai |
|---|---|
| 論文名稱: |
台灣國際觀光旅館經營效率與生產力之研究—DEA、SFA、Malmquist之應用 Efficiency and Productivity of the International Tourist Hotel Sector in Taiwan —Application of DEA, SFA and Malmquist Index |
| 指導教授: |
陳勁甫
Chen, Ching-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 經營效率 、資料包絡分析法 、隨機邊界法 、Malmquist指數 、Tobit迴歸 、國際觀光旅館 、生產力 |
| 外文關鍵詞: | Productivity, Data Envolpment, Operation Efficiency, International Tourist Hotel |
| 相關次數: | 點閱:128 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用資料包絡分析法分析民國89到民國95年台灣地區47家國際觀光旅館的經營效率,發現在CCR模型下的平均總效率為0.825,而BCC模型下所衡量的技術為0.863。在以五個環境因子進行分組後,將其效率值利用ANOVA進行檢定,發現:台北地區、大規模、連鎖經營、休閒旅館與以國外旅客為主要客源的旅館效率經營較佳。而為了瞭解參數法與非參數法的相關程度,本研究以隨機邊界法利用spearman相關係數與之比較,發現兩研究方法呈低度相關,並在平均不同期間的相關係數後發現以資料包絡分析法較適用於台灣國際觀光旅館。
除了效率的表現外,為了瞭解環境因素對於效率的影響,本研究利用:地區、規模、目標市場、經營型態與主要客源等五個因素以Tobit 迴歸進行探討,發現在大規模、連鎖、主要客源為外國客戶者會正向地影響效率,而高雄、商務旅館在效率上則有比較低的表現。
在生產力上,總要素生產力(TFP)為1,代表在研究期間台灣國際觀光旅館的生產力表現持平;而在技術變動(TECH-ch)與規模效率變動(SE-ch)小於1代表在研究其間各旅館平均而言還需提升生產技術(營運流程)與增加規模:而在技術效率變動(TE-ch)與純粹效率變動(PTE)上為大於1,代表各旅館有降低浪費與提昇效率的狀況。而以環境因子與總要素生產力將所有旅館分組後,發現:高雄地區、中規模、獨立經營、商務旅館、以國內客戶為主要對象之旅館經營生產力表現較佳。
Because of the industries and the policy changing, Taiwan pay more attention to the development of tourism. The number of international tourist hotel develops from 40 in 1992 to 96 in 2006. Because of the high competition, there are more people regard the hotel efficiency. This paper use data envelopment analysis (DEA), stochastic frontier approach (SFA) and Malmquist productivity index to measure the performance of 47 hotels and efficiency change from 2000 to 2006. The results revealed that the total efficiency in CCR model is 0.825 and the technical efficiency in BCC model is 0.863. In the ANOVA result, the hotel of Taipei, large scale, chain operation, resort hotels and foreign customer hotels are better than other codition. The DEA and SFA show the insignificant colleration by spearman method. Otherwise, the DEA method is more appropriate than SFA in Taiwan international tourist hotel.
In other hand, this paper also compare the efficiency by Tobit regression with the different environment factors (area, scale, market, management style and the source of customers). The results revealed that there was a significant difference in efficiency due to area, management style, Market and the source of customers. The large scale, chain operation, foreign hotels will effect the efficiency positively, but the Kaohsiung and city hotel will effect the efficiency negatively.
The TFP-ch is one, it meens that the total productivity is unsignificant change during the research period. The TECH-ch and the SE-ch are less than one, it meens that the field have to improve the operation approach and the industrial scale.The TE-ch and the PTE-ch are more than one, the result meens the resource saving and efficiency improving. After sorting by enviorment factors, the Kaoshoung, middle scale, independent operation, city hotels have better productivity than others.
中文:
1. 王克陸、彭雅惠、陳美燁(民96),台灣金控子銀行經營績效之評估-使用DEA方法,科技管理學刊第十二卷第二期,pp.1-28。
2. 王婷瑜(民92),國際觀光旅館經營效率與生產力消長之研究,南華大學旅遊事業管理研究所碩士論文。
3. 王媛慧.李文福.翁竹君(民96),台灣國際觀光旅館業生產力與效率分析:隨機邊界距離函數之應用,經濟論文叢刊,35:1 , 55–86。
4. 王斐青、洪維廷、尚瑞國(民93),台灣地區國際觀光旅館經營型態與經營效率之衡量,亞太經營管理評論第七卷第一、二期。
5. 交通部觀光局(民89-95),台灣地區國際觀光旅館營運分析報告,台北:交通部觀光局。
6. 行政院主計處(民94),重要國情統計,行政院主計處網站(WWW.dgbas.gov,tw)
7. 吳忠岳(民92),台鐵車站生產效率分析,國立成功大學交通管理研究所碩士論文。
8. 高子荃、陳振遠、周建新(民92)台灣地區產險業經營效率之研究—資料包絡分析法與Malmquist生產力指數之應用。輔仁管理評論,第十一卷第一期,53-76。
9. 高強、黃旭男、Toshiyuki Sueyoshi(民92)管理績效評估—資料包絡分析法,台北,華泰出版社。
10. 陳勁甫、王婷瑜(民92),國際觀光旅館經營效率衡量之研究—隨機邊界法之應用,旅遊管理研究,第三卷第一期,pp.63-77。
英文:
1. Abbott, M., and Doucouliagos, C., “The efficiency of Australian universities: a data envelopment,” Economics of Education Revie. Vol.22, pp.89–97, 2003.
2. Afriat, S., “Efficiency estimation of production functions,” International Economic Review. Vol. 13, PP- 568-98, 1972.
3. Aigner, D. J., and Chu S. F., “On Estimating the Industry Production Function,” The American Economic Review. Vol. 58, No. 4, pp. 826-839, 1968.
4. Aigner, D., Lovell C.A.K and Schimidt, P., “Formulation and Estimation of Stochastic Frontier Function Models,” Journal of Economics, Vol.6, pp.21-29, 1977.
5. Anderson, R. I., Fish, M., Xia, Y., and Michello, F., “Measure efficiency in the hotel industry: A stochastic frontier approach,” Hospital Management. Vol.18, pp.45-57, 1999.
6. Banker, R. D., Charnes, A. and Cooper, W. W., “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis,” Management Science. Vol. 39, pp.1261-1264, 1984.
7. Barros, C. P., “Evaluating the efficiency of a small hotel chain with a Malmquist productivity index,” International Journal of Tourism Researc. Vol7, No.3, pp.173-184, 2005a.
8. Barros, C. P., “Measuring efficiency in the hotel sector,” Annals of Tourism Research. Vol.32, No.2, pp.456-477, 2005b.
9. Barros, C. P., and Alves, F. P., “Productivity in the tourism industry,” International Advances in Economic Research. Vol.10, No.3, pp.215-225, 2004.
10. Barros, C. P., and Santos, C. A., “The measurement of efficiency in Protuguese hotels using data envelopment analysis,” Journal of Hospitality & Tourism Research, Vol.30, No.3, pp. 378-400, 2006.
11. Bauer, P.W., Berger, A.N., Ferrier, G.D. and Humphrey, D.B., “Consistency Condition for regulatory Analysis of Financial Institution: A Comparison of Frontier Efficiency Methods,” Journal of Economics and Business. Vol.50, pp.85-114, 1998.
12. Brown, J. R., and Ragsdale, C. T., “The Competitive Market Efficiency of Hotel Brands: An Application of Data Envelopment Analysis,” Journal of Hospitality & Tourism Research. Vol. 26, No. 4, pp. 332-360, 2002.
13. Cantos, P., Pastor J. M. and Serrano, L., “Productivity Efficiency and Technical Change in European Railways: A non-parametric approach,” Transportation. Vol.26, pp.337-357, 1999.
14. Caves, D. W., Christensen, L.R. and Diewert, W.E., “The Economic Theory of Index number of the Measurement of input, output and productivity,” Econometrics. Vol. 50, pp.1393-1414, 1982.
15. Charnes, A., Cooper, W.W. and Rhodes, E., “Measure the efficiency of Decision Making units,” European Journal of Operational Research. Vol.2, pp.429-444, 1978.
16. Chen, C. F., “Applying the stochastic frontier approach to measure hotel managerial efficiency in Taiwan,” Turism Management. Vol.28, pp. 696-702, 2006.
17. Cummins, J. D., and Zi, H., “Comparison of frontier efficiency methods:An application to the US life insurance industry,” Journal of Productivity Analysis. Vol.10, 1998, pp.131-152, 1998.
18. De Borger, B., and Kerstens, K., “efficiency of Belgian local governments: A comparative analysis of FDH, DEA, and econometric approaches,” Regional Science and Urban Economics. Vol. 26, No.2, pp.145-170, 1996.
19. Drake, L. and Weyman-Jones, T. G., “Technical and scale efficiency in UK building societies,” Applied Financial Economics. Vol.2, pp.1-9, 1992.
20. Färe, R., Grosskopf, S., and Lovell, C. A. K., “Production frontiers, Technical Progress and Efficiency Change in Industrialized Countries,” American Economic Review. Vo.84, pp.66-83, 1994.
21. Farrell, M. J., “The measurement of productive efficiency,” Journal of the Royal Statistical Society: Series A (General). Vol.120, No.3, pp. 253-290, 1957.
22. Fecher, F., Kessler D., Perelman S. and Pestieau P., “Productive performance of the French insurance industry,” Journal of productive Analysis. Vol.4, pp. 77-93, 1993.
23. Fried, H. O., Lovell, C. A. K., and Schmidt S. S., “Production Frontiers and Productive Efficiency, in the Measurement of Productive Efficiency,” Techniques and Applications. New York Oxford University Press, pp. 3-67, 1993.
24. Fried, H. O., Lovell, C. A. K., Schmidt, S. S., and Yaisawarng, S., “Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis,” Journal of Productivity Analysis. Vol. 17, No. (1-2), pp. 157-174, 2000.
25. Gleason, J. M. and Barnum, D.T., “Toward Valid Measure of Public Sector Productivity: Performance Measure in Urban Transit,” Management Science. Vol.28, No.4. pp. 379-386, 1982.
26. Granderson, G. and Linvill, C., “Parametric and non-parametric approaches to benchmarking the regulated firm,” journal of productive analysis. Vol.12, pp211-231, 1999.
27. Hjalmarsson, L., Kumbhakar, S. C., and Heshmati, A., “DEA, DFA and SFA: A Comparison,” The Journal of Productivity Analysis. Vol.7, pp.303-327, 1996.
28. Hwang, S. N., and Chang, T. Y., “Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan,” Tourism Management. Vol.24, pp.357-369, 2003.
29. Jandrow, J., C. A. K. Lovell. I, S, Materov, and P, Schmidt., “On the Estemation of Technical Ineficiency in the Stochastic Frotier Production function Model, ” Journal of Economic Efficiencs. Vol:19, No:2-3, PP.233-238, 1982.
30. Kimes, S.E., “The basic of yield management,” Cornell Hotel & Restaurant Administration Quarterly. Vol.30, No.3, pp.14-19, 1989.
31. Meeusen, W., and Broeck., J. V., “Efficiency estimation from Cobb–Douglas production functions with composed error,” International Economic Review. Vol.18, pp.435–444, 1977.
32. Morey, R. C., and Dittman, D. A., “Evaluating a hotel GM’s performance: A case study in benchmarking,” The Cornell Hotel and Restaurant Administration Quarterly. Vol.36, No.5, pp.30-35, 1995.
33. Reynolds, D., “Hospitality-productivity assessment using data-envelopment analysis,” The Cornell Hotel and Restaurant Administration Quarterly. Vol.44, No.2, pp.130-137, 2003.
34. Sharma, K.R, Leung P. and Zaleski H.M., “Productive efficiency of the Swine industry in Hawaii: Stochastic frontier vs. Data envelopment analysis,” Journal of productive analysis. vol.8, pp.447-459, 1997.
35. Sherman, D., and Gold, F., “Branch Operating Efficiency: Evaluation with Data Envelopment Analysis,” Journal of Banking and Finance, Vol.9, pp.297-315, 1985.
36. Stevenson, R. E., “ Likelihood Function for Generalised Stochastic Frontier Estimation,” Journal of Econometrics. Vol.13, No:1, pp.57-66, 1980.
37. Schmidt, P., “On the Statistical Estimation of parametric Frontier Production Functions,” Review of Economics and Statistics. Vol:58, No:2, pp.238-239, 1976.
38. Thore, S., Philips, F., Ruefli, T. W., and Yue, P., “DEA and the management of the product cycle: the U.S. computer industry,” Computer and Operations Research. Vol 23, No.4, pp. 341-356, 1996.
39. Tsaur, S. H., Chiang, C. I., and Chang, T. Y., “Evaluating the operating efficiency of international tourist hotels using the modified DEA model,” Asia Pacific Journal of Tourism Research. Vol.4, No.2, pp.73-78, 1999.
40. Wang, F. C., Hung, W. T., and Shang. J. K., “Measuring Pure Managerial Efficiency of International Tourist Hotels in Taiwan,” The Service Industries Journal. Vol.26, No.1, pp.59-71, 2006.
41. Wassenaar, K., and Stafford, E.R., “The lodging index: an economic indicator for the hotel/motel industry,” Journal of Travel Research. Vol.30, No.1, pp.18-21, 1991.
42. Wijeysinghe, B.S., “Breakeven occupancy for a hotel operation,” Management Accounting, Vol.71, No.2, pp.32-33, 1993.
43. Worthington, A. C., “Malmquist indices of Productivity Change in Australian Financial Services,” Journal of International Financial Markets. Vol.9, No.3, pp.303-320, 1999.
44. Yasin, M. M., Andrew, J. C., and Jeffrey, J. D., “A framework for the establishment of an optimal service quality level in a hospitality operational setting,” Journal of Hospitality & Leisure Marketing. Vol.4, No.2, pp.25–48, 1996..
45. Yuengert, A. M., “The measurement of efficiency in life insurance: Estimation of a mixed normal-gamma error model,” Journal of Banking & Finance. Vol.17, pp.483-496, 1993.