簡易檢索 / 詳目顯示

研究生: 羅文新
Lo, Wen-Hsin
論文名稱: 水膜流佈鐵捲門的防火性能與熱傳機制
Heat Transfer Mechanism and Fireproof Characteristics of a Steel Roller Shutter with Flowing Water Film
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 鐵捲門水膜逆向熱傳導問題阻熱實驗
外文關鍵詞: Water film, Roller shutter, Inverse heat conduction problem, Fire insulation experiment
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對在一般火場環境下,利用多孔管供水裝置結合一般性鐵捲門所建立的技術及設備,來探討含水膜鐵捲門之防火阻熱性能以及影響避難人員之程度。研究結果分成兩個部份來加以說明:一般性鐵捲門結合水膜系統之防火阻熱性能研究以及二維逆向熱傳法預測鐵捲門曝火面熱傳特性。其最終目的為使一般性鐵捲門能夠具有和防火捲門一樣的遮焰能力,更可達到阻熱性能。

    一般鐵捲門結合水膜系統之防火阻熱性能研究中,主要分作三個部分進行討論,分別為(1)冷流場實驗、(2)含水膜鐵捲門燃燒實驗以及(3)水膜系統啟動時機實驗。首先藉由冷流場實驗驗證本研究所設計的多孔管是否於鐵捲門上形成均勻水膜,並由燃燒實驗驗證前述最佳化供水量的準確性,以及燃燒過程中,水蒸氣量的大小與鐵捲門表面熱輻射量是否影響避難人員的視線以及造成危害。最後以水膜系統的啟動時機實驗評估火災發生時,一般鐵捲門於有水膜覆蓋的情況下,能夠符合CNS14803所訂定的升溫限制,並藉此推算水膜系統可延遲多少時間啟動。二維逆向熱傳法預測鐵捲門曝火面熱傳特性方面,主要針對含水膜鐵捲門受曝於火場的情境中建立二維暫態熱傳導模型,來預測含水膜鐵捲門系統曝火面的表面熱傳量,並藉由預測之表面熱傳量,加以評估鐵捲門含有水膜情況下之曝火面溫度。模擬結果顯示,藉由多孔管形成水膜系統的方式,能夠有效提升鐵捲門阻熱性能,並藉由分析模擬結果後,確立了含水膜鐵捲門曝火面/非曝火面之熱傳特性,並指出含水膜鐵捲門表面溫度低於鐵捲門材質之熔點溫度以及破損溫度。

    This study investigates fire protection performance and the effect of installation of a general roller shutter with an embedded perforated straight pipe a as the water film cooling system. The objective of this study was to endow general roller shutters with the fire insulation ability of a fire-proof roller shutter. The thesis is divided into two sections: The full-scale experiment involving a roller shutter with water film cooling system, and a numerical simulation with the two-dimension hybrid inverse heat conduction scheme.

    In the full-scale experiment part, three experiments were conducted to investigate the methodologies of roller shutters with a water cooling system. Cold-flow and heat-resistance experiments were carried out to evaluate the water film performance of the perforated pipe on the shutter surface and to verify the fire insulation efficacy of a roller shutter featuring a water film; all experiments were performed via the full-scale heating furnace located in the Architecture and Building Research Institute (ABRI). The startup of water film cooling system was timed to determine the activation time of the water film cooling system when the roller shutter encounters a fire event.

    However, the temperature distribution on the hot side is not easily determined using direct experimental methods due to the extreme heat. Thus, in the present study, the average heat transfer coefficient, the heat flux and the temperature on the hot side are computed using a hybrid inverse heat conduction scheme based on experimental temperature measurements acquired on the cold side. Numerical simulations are performed to investigate the heat transfer characteristics on both sides of the roller shutter with and without the down-flowing water film, respectively. The result indicates that the water film cooling system effectively enhances the fire insulation of the roller shutter, and presents the maximum temperature and temperature difference are below the breakage limit.

    Contents…………………………………………………………I List of Tables…………………………………………………III List of Figures ………………………………………………IV Nomenclature……………………………………………………VI 1. Introduction ………………………………………………1 1.1 Fire compartment ………………………………2 1.2 Surface cooling with water film system……………4 1.3 Hybrid inverse heat conduction problem……………9 1.4 Objectives…………………………………………………12 2. Full-scale experiment……………………………………14 2.1 Equipment …………………………………………………14 2.1.1 Full-scale heating furnace…………………………14 2.1.2 Water film system ……………………………………15 2.2 Cold flow experiment……………………………………17 2.2.1 Hydraulic model of perforated pipe………………17 2.2.2 Water injection test…………………………………23 2.3 Fire insulation experiment……………………………24 2.3.1 Setup and measurements………………………………24 2.3.2 Temperature distribution on shutter surface …26 2.3.3 Temperature distribution inside of the furnace, water vapor appearance and heat radiation ……30 2.4 Startup of water film cooling system………………32 2.4.1 Setup and measurements………………………………32 2.4.2 Temperature distribution on shutter surface …32 2.5 Summary ……………………………………………………33 3. Numerical simulation……………………………………35 3.1 Mathematical formulation………………………………………35 3.2 Numerical analysis………………………………………39 3.3 Results and discussion…………………………………44 3.4 Summary ……………………………………………………50 4. Conclusion…………………………………………………52 5. Reference …………………………………………………54 Tables and Figures……………………………………………60 List of publications…………………………………………98

    1.Brian, M., “Glazing for Compartment in Proceeding of Workshop on Fire Safety Engineering Principles,” Taipei, Taiwan, 2000.

    2.“NFPA 101:Life Safety Code, 2003 Edition” National Fire Protection Association, 2003.

    3.“Building Design Construction Section No.79,” Building Technical Rules, Taiwan, 2010.

    4.CNS 14803, “Method of Fire Resistance Tests for Rolling Shutter of Buildings,” National Standards of the Republic of China, 2002.

    5.ISO 3008, “Fire-resistance Tests-door and Shutter Assemblies,” International Organization for Standardization, 2007.

    6.Landau, H. G., “Heat Conduction in a Melting Solid,” Quarterly Applied Math., Vol. 8, p. 312, 1950.

    7.Carslaw, H. S., and Jaeger, J. C., “Conduction of Heat in Solid,” Oxford University Press, 1959.

    8.Sunderland, T. E., and Grosh, R. J., “Transient Temperature in a Melting Solid,” J. Heat Transfer, Vol. 83, p. 409, 1961.

    9.Zien, T. F., “Integral Solution of Ablation Problems with Time-Dependent Heat Flux,” AIAA Journal, Vol. 16, p. 1287, 1978.

    10.Thomas, W. C., and Sunderland, J. E., “Heat Transfer between a Plane Surface and Air Containing Suspended Water Droplet,” Ind. Eng. Chem. Fundamen., Vol. 9, p. 369, 1970.

    11.Aihara, T., Taga, M., Haraguchi, T., “Heat Transfer from a Uniform Heat Flux Wedge in Air-Water Mist Flows,” Int. J. Heat Mass Transfer, Vol. 22, p. 51, 1979.

    12.Chang, C. J., Lin, T. F., and Yan, W. M., “Natural Convection Flows in a Vertical Open Tube Resulting From Combined Buoyancy Effects of Thermal and Mass Diffusion,” Int. J. Heat Mass Transfer, Vol. 29, p. 1543, 1986.

    13.Yan, W. M., “The Effect of a Liquid Film Vaporization on Natural Convection Heat and Mass Transfer in a Vertical Tube,” Can. J. Chem. Eng., Vol. 70, p. 452, 1992.

    14.Yan, W. M., “Binary Diffusion and Heat Transfer in Mixed Convection Pipe Flows with Film Evaporation,” Int. J. Heat Mass Transfer, Vol. 36, p. 2115, 1993.

    15.Goldstein, M. E., Yang, W. J., Clark, J. A., “Momentum and Heat Transfer in Laminar Flow of Gas with Liquid-droplet Suspension over a Circular Cylinder,” J. Heat Transfer, Vol. 89, p. 185, 1967.

    16.Goldstein, M. E., Yang, W. J., Clark, J. A., “Boundary Layer Analysis of Two-phase Flow over an Oscillating Flat Plate,” AIAA Journal, Vol. 5, p. 43, 1967.

    17.Shembarker, T. R., and Pai, B. R., “Prediction of Film Cooling with a Liquid Coolant,” Int. J. Heat Mass Transfer, Vol. 29, p. 899, 1986.

    18.Yan, W. M., “Convective Heat and Mass Transfer from a Falling Film to a Laminar Gas Stream,” Heat Mass Transfer, Vol. 29, p. 79, 1993.

    19.Yan, W. M., and Soong, C. Y., “Numerical Study of Liquid Film Cooling in a Turbulent Gas Stream,” Int. J. Heat Mass Transfer, Vol. 36, p. 3877, 1993.

    20.Wendelstorf, J., Spitzer, K. H., Wendelstorf, R., “Spray Water Cooling Heat Transfer at High Temperatures and Liquid Mass Fluxes,” Int. J. Heat Mass Transfer, Vol. 51, p. 4902, 2008.

    21.Martin, C., and Miroslav, R., “Experimental Investigation of Spray Cooling of Horizontally and Vertically Oriented Surfaces,” Int. J. Metal, Brno, Czech Republic EU, 2013.

    22.Mohapatra, S. S., Chakraborty, S., Pal, S. K., “Experimental Studies on Different Cooling Processes to Achieve Ultra-fast Cooling Rate for Hot Steel Plate,” Exp. Heat Transfer, Vol. 25, p. 111, 2012.

    23.Lin, T. F., Chang, C. J., and Yan, W. M., “Analysis of Combined Buoyancy Effects of Thermal and Mass Diffusion on Laminar Forced Convection Heat Transfer in a Vertical Tube,” J. Heat Transfer, Vol. 110, p. 337, 1988.

    24.Curico, T. A., and Petty, C. C., “The near Infrared Absorption Spectrum of Liquid Water,” J. Opt. Soc. Am., Vol. 41, p. 302, 1951.

    25.Plyler, E. K., and Acquista, N., “Infrared Absorption of Liquid Water from 2 to 42 Microns,” J. Opt. Soc. Am., Vol. 44, p. 505, 1954.

    26.Wu, C. W., Lin, T. H., Lei, M. Y., Chung T. H., Huang, C. H., Chiang, W. T., “Fire Test on a Non-Heat-Resistant Fireproof Glass with Down-Flowing Water Film,” IAFSS 8th, Beijing, China, 2005.

    27.Wu, C. W., Lin, T. H., “Fire Resistance Tests of a Glass Pane with Down-flowing Water Film,” Technical Report, Safety Technology Co., 2008.

    28.Lee, S. K., Ho, M. C., Chen, J. J., Lin, C. Y., Lin, T. H., “Fire Resistance Evaluation of a Steel Roller Shutter with Water-film Cooling System,” Appl. Therm. Eng., Vol. 58, p. 465, 2013.

    29.Özisik, M. N., “Heat conduction,” John Wiley & Sons, New York, 1993.

    30.Kurpisz, K., Nowak, A. J., “Inverse thermal problems,” WIT Press, 1995.

    31.Beck, J. V., “Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem,” Int. J. Heat Mass Transfer, Vol. 13, p. 703, 1970.

    32.Beck, J. V., Litkouhi, B., and Clair, C. R, “Efficient Sequential Solution of the Nonlinear Inverse Heat Conduction Problem,” Numer. Heat Transfer, Vol. 5, p. 275, 1982.

    33.Bass, B. R., “Application of the Finite-Element Method to Nonlinear Inverse Heat Conduction Problem Using Beck’s Second Method,” Int. J. Heat Mass Transfer, Vol. 102, p. 168, 1980.
    34.Hills, R. G., Hensel, E. C., Jr., “One-Dimensional Nonlinear Inverse Heat Conduction Technique,” Numer. Heat Transfer, Vol. 10, p. 369, 1986.

    35.Silva Neto, A. J., Ozisik, M. N., “Two-Dimensional Inverse Heat Conduction Problem of Estimating the Time-Varying Strength of a Line Heat Source,” J. Appl. Phys., Vol. 71, p. 5357, 1992.

    36.Chen, H. T., Lin, J. Y., “Hybrid Laplace Transform Technique for Nonlinear Transient Thermal Problems,” Int. J. Heat Mass Transfer, Vol. 34, pp. 1301, 1991.

    37.Chen, H. T, Lin, S. Y., Fang, L. C., “Estimation of Surface Temperature in Two-dimensional Inverse Heat Conduction Problems,” Int. J. Heat Mass Transfer, Vol. 44, p. 1455, 2001.

    38.Chen, H. T, Lin, S. Y., Fang, L. C., “Estimation of Two-sided Boundary Conditions for Two-dimensional Inverse Heat Conduction Problems,” Int. J. Heat Mass Transfer, Vol. 45, , p. 15, 2002.

    39.Chen, H. T., Wu, X. Y., “Estimation of Surface Absorptivity in Laser Surface Heating Process with Experimental Data,” J. Phys. D: Appl. Phys., Vol. 39, p. 1141, 2006.

    40.Chen, H. T., Lee, H. C., “Estimation of Spray Cooling Characteristic on a Hot Surface Using the Hybrid Inverse Scheme,” Int. J. Heat Mass Transfer, Vol. 50, p. 2503, 2007.

    41.Chen, H. T., Wu, X. Y., “Investigation of Heat Transfer Coefficient in Two-dimensional Transient Inverse Heat Conduction Problems Using the Hybrid Inverse Scheme,” Int. J. Numerical Methods in Engineering, Vol. 73, p. 107, 2008.

    42.Chen, H. T., Lee, S. K, “Estimation of Heat Transfer Characteristics on the Hot Surface of Glass Pane with Down-flowing Water Film,” Int. J. Building and Environment, Vol. 45, p. 2089, 2010.

    43.Chen, S. T., Chang, H. C., Shih, H., “Design of Perforated Distribution Pipe with Variable Aperture,” Water & Wastewater Engineering, Vol. 28, p. 23, 2002.

    44.Ipeleng, S. M., “Friction Factor Correlations for Perforated Tubes at Low Injection Rate,” Unpublished Master Dissertation, Department of Mechanical and Aeronautical Engineering Pretoria University, 2011.

    45.Kim, G. H., “New Perforation Pressure-Loss Correlations for Limited-Entry Fracturing Treatments,” Unpublished Master Dissertation, Department of Energy and Mineral Engineering Pennsylvania State University, 2010.

    46.Wang, A., Liu, Y. L., Ni, B. H., Lee, Y. X., “Flowing Behavior in Multi-hole pipes,” Chemical engineering, Vol. 20, p. 52, 1992.

    47.Lee, S. K., Lo, W. H., Ho, M. C. and Lin, T. H., “Estimation of Optimal Water Flow Rate of a Steel Roller Shutter with Water Film Cooling System,” Advanced Materials Research, Vol. 905, p.263, 2014.

    無法下載圖示 校內:2019-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE