簡易檢索 / 詳目顯示

研究生: 吳堃嘉
Wu, Kun-Jia
論文名稱: 多產品有限儲存容量半導體製造網路之最佳化派遣策略
Optimal Dispatching Policies for Semiconductor Manufacturing Networks with Multiple Products and Finite Storage Capacities
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 161
中文關鍵詞: 半導體製造等候理論派遣策略EWMA混整數非線性規劃數值模擬
外文關鍵詞: semiconductor manufacturing, queuing theory, dispatching policy, EWMA, MINLP, numerical simulation
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體製造工業一個資本與技術密集的產業,隨著特徵尺寸的縮小及晶圓半徑的增加,為了提升產出良率以及增加設備效率,精密的控制方法就顯得有其必要。
    在本研究中我們將半導體製造程序視為多階段多M/M/1/K機台的等候網路,各類不同產品在每一階段中可依指定比例分配派送至各機台中處理,而每一機台的製程配方依EWMA控制策略逐批調整。根據這些假設我們發展出混整數非線性規劃模型來決定可達成最大化製程能力以及最小化系統時間的最佳化派遣策略,並成功的利用數值模擬方法驗證此派遣模式的合理性。我們也在不同案例研究中討論輸入產品及機台干擾對輸出產品品質的效應,並且建議應避免的控制器調整參數範圍,同時也探討了不同操作參數影響系統時間的效應,結果顯示平均抵達速率、流失機率上限及排隊容量除了影響平均系統時間也影響流失機率。

    Semiconductor manufacturing industry is a capital and technology-intensive industry. As feature sizes shrink and wafer sizes increase, intricate control methods are needed to improve the product quality and tools utilization of any production process.
    In this thesis, the semiconductor manufacturing process is treated as multiple M/M/1/K queuing systems operated in a network, and different products can be routed to tools in each stage. It is assumed that the exponentially-weighed-moving- average (EWMA) controller is implemented in each tool to adjust the process recipe from run to run. Based on these assumptions, a mixed integer nonlinear programming model (MINLP) is formulated to determine the optimal dispatching (routing) policies for maximizing process capability or minimizing average system time. Numerical simulation procedure is also devised to confirm the validity of the resulting dispatching model. The simulation results show that the predictions of this model are reasonable. Moreover, the impacts of changing noises of product and tool for product quality are investigated in case studies and the safe range of parameters values are suggested in the thesis. The impacts of changing parameters values for operating efficiency are also investigated. Both the expected system time and also the loss probability can be shown to be dependent upon average arrival rate, loss probability limit and queueing capability.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 XIV 符號表 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究目的 3 1.4 論文組織架構 4 第二章 半導體製程的等候系統模式 5 2.1 等候系統(Queueing System) 5 2.2 性能指標 13 2.3 Little’s定律 15 2.4 M/M/1/K 等候系統 18 2.5 M/M/1等候網路 25 2.6 半導體製程M/M/1/K等候網路 28 第三章 半導體製程的逐批控制策略 33 3.1 線性過濾器(linear filter)模型 33 3.2 整合移動平均(integrated moving average, IMA)模型 36 3.3 單一變數的逐批控制策略 39 3.4 單一產品品質 41 3.5 多產品品質 43 第四章 多產品網狀機台程序的最佳派遣策略 51 4.1 數學規劃模型 51 4.2 簡單案例 59 4.2.1 最小化系統時間期望值的派遣策略 60 4.2.2最大化程序製程能力的派遣策略 64 第五章 多產品半導體製程的模擬程序 69 5.1等候網路的模擬步驟 69 5.1.1 步驟一:決定各產品抵達階段的時間,並依預定策略分配至不同機台 70 5.1.2 步驟二:混合排列各類產品抵達機台之順序 72 5.1.3 步驟三:判斷抵達機台 的產品 是否流失 74 5.1.4 步驟四:決定機台 中產品處理時間 75 5.1.5 步驟五:計算產品在機台 中的系統時間 75 5.2 RbR控制系統的模擬步驟 77 5.3簡單案例 82 5.3.1 案例一:最小化系統時間期望值 84 5.3.2 案例二:最大化製程能力指標 94 第六章 案例研究 105 6.1 產品品質參數的影響 105 6.1.1 時間相關係數的影響 105 6.1.2控制器調協參數的影響 111 6.1.3 控制器調協參數之選擇範圍 117 6.2 操作效率參數的影響 125 6.2.1 抵達速率的影響 125 6.2.2 流失機率上限的影響 127 6.2.3 排隊容量的影響 129 6.3 顧客要求的影響 131 6.3.1 最小化系統時間期望值的派遣策略及數值模擬 134 6.3.2最大化產品製程能理的派遣策略及數值模擬 139 第七章 結論與未來展望 145 參考文獻 147 附錄A:變異數輸出公式推導 (Ai, 2009) 152 自述 161

    Ai, B. Private Communications, Huazhong University of Science and Technology, Wuhan, China, 2009.
    Baez Senties, O., Azzaro-Pantel, C., Pibouleau, L. & Domenech, S. Multiobjective scheduling for semiconductor manufacturing plants. Comput. Chem. Eng. 34 (2010) 555-566.
    Bhaskaran, K. & Pinedo, M. In Handbook of Industrial Engineering, edited by G. Salvendy. 1992 (John Wiley: New York, NY).
    Blackstone, J. H., Phillips, D. T. & Hogg, G. L. A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res., 1982, 20, 27–45.
    Bolch, G., Greiner, S., Meer, H., Trivedi, K. S. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. WILEY-INTERSCIENCE, 2006.
    Box, G. E. P., Jenkins, G. M. & Reinsel, G. Time Series Analysis Forecasting And Control(3rd Ed.). Prentice-Hall, 1994.
    Cassandras, C. G. & Lafortune, S. Introduction To Discrete Event System. Kluwer Academic. 1999.
    Choi J. Y. & Reveliotis, S. Relative value function approximation for the capacitated re-entrant line scheduling problem. IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 285–299, Jul. 2005.
    Dabbas, R. M., Chen, H. N. & Fowler J. W. et al., A combined dispatching criteria approach to scheduling semiconductor manufacturing systems. Comput. Ind. Eng., vol. 39, no. 3–4, pp. 307–324, Apr. 2001.
    Dabbas, R. M. & Fowler, J. W. A new scheduling approach using combined dispatching criteria in wafer fabs. IEEE Trans. Semiconduct. Manufact., vol. 16, no. 3, pp. 501–510, Aug. 2003.
    Del Castillo, E., Statistical Process Adjustment for Quality Control. John-Wiley & Sons. New York, 2002.
    Firth, S. K., Campbell, W. J., Toprac, A. & Edgar, T. F. Just-in-time adaptive disturbance estimation for run-to-run control of semiconductor processes. IEEE Trans. Semicond. Manuf. 19 (2006) 298–315.
    Ko, H. H., Kim, J., Kim, S. S. & Baek, J. G.. Dispatching rule for non-identical parallel machine with sequence-dependent setups and quality restrictions. Comput. Ind. Eng. 59 (2010) 448-457.
    Kutanoglu, E. & Sabuncuoglu, I. An analysis of heuristics in a dynamic job shop with weighted tardiness objectives. Int. J. Prod. Res., 1999, 37, 165–187.
    Lee, R. Uzsoy, C. & Martin-Vega, L. A review of production planning and scheduling models in the semiconductor industry, part II: Shop floor control. IIE Trans. Scheduling Logistics, vol. 26, no. 5, pp. 44–55, Sept. 1994.
    Lee, Y. H. & Kim, T. Manufacturing cycle time reduction using balance control in the semiconductor fabrication line. Production Planning Control, vol. 13, no. 6, pp. 529–540, Sept. 2002.
    Ma, M. D., Chang, C. C., Wong, D. S. H.& Jang, S. S. Identification of tool and product effects in a mixed product and parallel tool environment. Journal of Process Control. 2008.
    May, G. S. & Spanos, C. J. Fundamentals Of Semiconductor Manufacturing And Process Control. John Wiley & Sons. 2006.
    Mittler, M. & Schoemig, A. K. Comparison of dispatching rules for semiconductor manufacturing using large facility model. in Proc. 1999 Winter Simulation Conf., Phoenix, AZ, 1999, pp. 709–713.
    Morrison, J., Janakiram, M. & Kumar, P. R. A comparative study of scheduling policies at Motorola fabs, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation. San Francisco, 1999, pp. 51–56.
    Moyne, J. Run-to-Run Control in Semiconductor Manufacturing. CRC Press, Florida, 2001.
    Olkin, Ingram., Gleser, Leon J. & Derman, Cyrus., Probability Models And Applications. New York, 1980.
    Pasadyn, A. J. & Edgar, T. F., Observability and state estimation for multiple product control in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 18 (2005) 592–604.
    Patel, N. S. & Jenkins, S. T. Adaptive optimization of run-to-run controllers: the EWMA example. IEEE Trans. Semicond. Manuf., vol. 13, pp. 97-107, 2000.
    Pierce, N. G. & Yurtsever, T. Dynamic dispatch and graphical monitoring system, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation, San Francisco. 1999, pp. 57–61.
    Qu, P. & Mason, S. J. Metaheuristic scheduling of 300-mm lots containing multiple orders. IEEE Trans. Semiconduct. Manufact., vol. 18, no. 4, pp. 633–643, Nov. 2005.
    Raghu, T. S. & Rajendran, C. An efficient dynamic dispatching rule for scheduling in a job shop. Int. J. Prod. Econ., 1993, 32, 301–313.
    Rajendran, C. & Holthaus, O. A comparative study of dispatching rules in dynamic flowshops and jobshops. Eur. J. Op. Res., 1999, 116, 156–170.
    Sachs, E., Hu, A. & Ingolfsson, A. Run by run process control: combining SPC and feedback control, IEEE Trans. Semicont. Manuf., vol. 8, pp. 26-43, 1995.
    Smith, T. H. & Boning, D. S. Artificial neural network exponentially weighted moving average controller for semiconductor processes, J. Vacuum Science Tech., vol. 15, pp. 236-239, 1997.
    Tseng, S. T., Yeh, A. B., Tsung, F. & Chan, Y. Y. A study of variable EWMA controller. IEEE Trans. Semicond. Manuf., vol. 16, pp. 633-643, 2003.
    Wang, Zuntong., Wu, Qidi. & Qiao, Fei. A Lot Dispatching Strategy Integrating WIP Management and Wafer Start Control. IEEE Trans. Autom. Sci. Eng., vol. 4, no. 4, pp. 579–583, Jul. 2007.
    Wein, L. M. Scheduling semiconductor wafer fabrication. IEEE Trans. On Semiconductor Manufacturing. vol. 1, no. 3, pp. 115–130, Aug. 1988.
    Wu, M. F., Lin, W. K., Ho, C. L., Wong, D. S. H., Jang, S. S., Zheng, Y. & Jain, A. A Feed-Forward/Feedback Run-to-Run Control of a Mixed Product Process: Simulation and Experimental Studies. Ind. Eng. Chem. Res. 2007, 46, 6963-6970.
    Wu, M. F., Lin, C. H., Wong, D. S. H., Jang, S. S. & Tseng, S. S. Performance Analysis of EWMA Controllers Subject to Metrology Delay. IEEE Trans. On Semiconductor Manufacturing. vol. 21, no. 3, pp. 413–425, Aug. 2008.
    Zheng, Y., Lin, Q. H., Wong, D. S. H., Jang, S. S. & Hui, K. Stability and performance analysis of mixed product run-to-run control. J. Process. Control 16 (2006) 431–443.

    下載圖示 校內:2012-08-10公開
    校外:2012-08-10公開
    QR CODE