簡易檢索 / 詳目顯示

研究生: 林劭宇
Lin, Shao-Yu
論文名稱: 新型力量感測器於機器人運用
Using Novel Tactile Sensor for A Dynamic Robot
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 66
中文關鍵詞: 接觸式感測器感測器整合機器人
外文關鍵詞: Tactile Sensor, Sensor Integration, Robot
相關次數: 點閱:137下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計與製作一種新型的接觸式力量感測器,並將其應用於動態機器人上的感測。此感測器以單一的XGZP6847040KPG壓力感測模組為核心,外層包覆半球形的矽膠,將XGZP6847040KPG模組置於矽膠半球的核心。
    此感測器可輸出0.5V~4.5V的類比訊號,隨著半球半徑的不同,感測器可量測的力量範圍和靈敏度也會隨之改變。本論文針對此感測器的矽膠半球半徑、受力、接觸角度進行測試,並將此感測器裝於機器人腳部,與機器人機構上的旋轉式電位計整合演算,可得知機器人著地時的受力情形。
    此感測器具有製作容易、成本低廉的優點,輸出訊號具重複性、穩定、且接近線性,其半球形表面可以以不同角度接觸物體表面,輕巧的體積適合裝置在小型的機器人上,類比式的訊號輸出可以應付需要高頻率採樣的動態感測上。

    This thesis presents a novel tactile force sensor for real time application for a jumping robot. The sensor is made of a single XGZP6847040KPG barometric sensor module covered by silicone rubber of dome shape; its center is located at the ventilation hole of the barometric sensor module.
    The sensor has a 0.5V – 4.5V analog signal output. But its force sensing range and resolution are affected by the radius of the silicone rubber dome. The sensors were tested in different forces and contact angles for different radius of the silicone rubber dome. For dynamic tests, the sensor was installed on a robot leg, and the data obtained by the sensor were integrated with the data from a potentiometer to deduce the force applied to the robot leg.
    This novel tactile force sensor is easy and cheap to fabricate with stable and repeatable characteristics. The characteristic of this sensor is approximately linear. The silicone dome can contact the ground in various angles, and its size is suitable for a small-sized robot. The analog signal output can handle a high sampling rate in dynamic situations.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1前言 1 1.2 研究動機 1 1.3 文獻回顧 2 1.3.1 接觸式感測器文獻回顧 2 1.3.2 利用接觸式感測器的機器人文獻回顧 12 1.4 論文架構 16 第二章 感測器製作與硬體介紹 17 2.1 新型接觸式力量感測器之設計與製作 17 2.1.1 壓力感測模組選用 18 2.1.2 感測器的設計和製作 21 2.2 實驗硬體介紹 26 2.2.1 Raspberry Pi 3 Model B 26 2.2.2 MCP3008數位類比轉換器 27 2.2.3 Flexiforce A201電阻式力量感測器 28 2.2.4 3382H旋轉式電位計 29 2.2.5 VNH5019馬達控制模組 30 第三章 感測器特性與比較 31 3.1 感測器量測條件 31 3.2 感測器靜態特性量測 32 3.2.1 靜態量測實驗配置 32 3.2.2 靜態特性量測結果 34 3.3 感測器動態量測 37 3.3.1 動態量測實驗配置 38 3.3.2 Flexiforce A201電阻式力量感測器特性量測 39 3.3.3 感測器動態量測與比較 39 第四章 機器人平台實驗結果與討論 45 4.1實驗系統架構 45 4.1.1機器人腳部連桿 46 4.1.2 感測器整合演算 52 4.2 實驗條件與過程 53 4.3 實驗結果與討論 54 第五章 結論與建議 60 5.1 結論 60 5.2 建議 60 參考文獻 62

    [1]J. A. Fishel and G. E. Loeb, "Bayesian Exploration for Intelligent Identification of Textures," Frontiers in Neurorobotics, Jun. 2012.
    [2]U. Martinez-Hernandez, T. Dodd, L. Natale, G. Metta, T. Prescott and N. Lepora, "Active contour following to explore object shape with robot touch," 2013 World Haptics Conference (WHC), pp. 341-346, Apr. 2013.
    [3]K.-C. Nguyen and V. Perdereau, "Fingertip force control based on max torque adjustment for dexterous manipulation of an anthropomorphic hand," 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3557-3563, Nov. 2013.
    [4]M. Prats, A. P. del Pobil and P. J. Sanz, Robot Physical Interaction through the combination of Vision, Tactile and Force Feedback, vol. 84 of Springer Tracts in Advanced Robotics, Springer, 2013.
    [5]H. Yousef, M. Boukallel and K. Althoefer, "Tactile sensing for dexterous in-hand manipulation in robotics—A review," Sensors and Actuators A: Physical, vol. 167, no. 2, pp. 171-187, Jun. 2011.
    [6]M. I. Tiwana, S. J. Redmond and N. H. Lovell, "A review of ractile sensing technologies with applications in biomedical engineering," Sensors and Actuators A: Physical, 28 Feb. 2012.
    [7]Y. Tenzer, L. P. Jentoft and R. D. Howe, "Inexpensive and Easily Customized Tactile Array Sensors," IEEE Robotics & Automation Magazine, pp. 89-95, Sep. 2014.
    [8]A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata and G. Metta, "Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors," IEEE Transactions on Robotics, vol. 27, no. 3, pp. 389-400, Jun. 2011.
    [9]Z. Kappassova, J. A. Corralesb and V. Perdereaua, "Tactile sensing in dexterous robot hands - review," Robotics and Autonomous Systems, Vols. 74, Part A, pp. 195-220, Dec. 2015.
    [10]M. Zillich and W. Feiten, "A versatile tactile sensor system for covering large and curved surface areas," IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2012.
    [11]RightHand Labs, "TakkTile Sensors," RightHand Robotics, Inc., 2018. [Online]. Available: https://www.labs.righthandrobotics.com/takktile-sensors. [Accessed 16. Jul. 2019].
    [12]A. Hamed, M. T. Masouleh and A. Kalhor, "Design & Characterization of a Bio-Inspired 3-DOF," International Conference on Robotics and Mechatronics Tactile/Force Sensor for Human-Robot Interaction Purposes, pp. 488-493, Oct. 2018.
    [13]P. Piacenza, S. Sherman and M. Ciocarlie, "Data-Driven Super-Resolution on a Tactile Dome," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1434-1411, Jul. 2018.
    [14]M. Y. Chuah and S. Kim, "Enabling Force Sensing During Ground Locomotion: A Bio-Inspired, Multi-Axis, Composite Force Sensor Using Discrete Pressure Mapping," IEEE Sensors Journal, vol. 14, no. 5, pp. 1693-1703, May. 2014.
    [15]M. Y. (Michael) Chuah and S. Kim, "Improved Normal and Shear Tactile Force Sensor Performance via Least Squares Artificial Neural Network (LSANN)," IEEE International Conference on Robotics and Automation (ICRA), pp. 116-122, 16-21. May. 2016.
    [16]A. Cirillo, P. Cirillo, G. D. Maria, C. Natale and S. Pirozzi, "Force/Tactile Sensors Based on Optoelectronic Technology for Manipulation and Physical Human–Robot Interaction," in Microsystems and Nanosystems, 2016.
    [17]A. Cirillo, P. Cirillo, G. D. Maria, C. Natale and S. Pirozzi, "A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing," Journal of Sensors, vol. 2017, 2017.
    [18]T. Takeshita, K. Harisaki, H. Ando. E. Higurashi, H. Nogami and R. Sawada, "Development and evaluation of a two-axial shearing force sensor consisting of an optical sensor chip and elastic gum frame," Precision Engineering, vol. 45, pp. 136-142, Jul. 2016.
    [19]G. Palli, L. Moriello and C. Melchiorri, "On the Bandwidth of 6-axis Force/Torque Sensors for Underwater Applications," OCEANS 2015 - Genova, 18-21 May. 2015.
    [20]C. Lam, Y. Noh, M. Howard, S. Luo, S. Han and K. Rhode, "Human finger inspired grasping structure using tactile sensing array with single type optoelectronic sensor," 2017 IEEE SENSORS, 29. Oct. 2017.
    [21]G. H. Büscher, R. Kõiva, C. Schürmann, R, Haschke and H. J. Ritter, "Flexible and stretchable fabric-based tactile sensor," Robotics and Autonomous Systems, vol. 63, pp. 244-252, Jan. 2015.
    [22]H. Liu, J. Greco, X. Song, J. Bimbo, L. Seneviratne and K. Althoefer, "Tactile Image based Contact Shape Recognition using Neural Network," Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 138-143, Sep. 2012.
    [23]R. Kõiva, M. Zenker, C. Schürmann, R. Haschke and H. J. Ritter, "A highly sensitive 3D-shaped tactile sensor," 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1084-1089, Jul. 2013.
    [24]A. Schmitz, M. Maggiali, L. Natale, B. Bonino and G, Metta, "A tactile sensor for the fingertips of the humanoid robot iCub," 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2212-2217, Oct. 2010.
    [25]Q. Yuan and J. Wang, "Design and Experiment of The NAO Humanoid Robot’s Plantar Tactile Sensor for Surface Classification," 2017 4th International Conference on Information Science and Control Engineering, pp. 931-935, 2017.
    [26]D. Xu, G. E. Loeb and J. A. Fishel, "Tactile identification of objects using Bayesian exploration," 2013 IEEE International Conference on Robotics and Automation, pp. 3056-3061, May. 2013.
    [27]C. Ades, I. Gonzalez, M. AlSaidi, Dr. M. Nojoumian, Dr. O. Bai and Dr. A. Aravelli, "Robotic Finger Force Sensor Fabrication and Evaluation Through a Glove," 31st Florida Conference on Recent Advances in Robotics, 10-11 May. 2018.
    [28]J. Ramos, B. Katz, M. Y. (Michael) Chuah and S. Kim, "Facilitating Model-Based Control through Software-Hardware Co-Design," IEEE International Conference on Robotics and Automation (ICRA), pp. 566-572, 21-25 May. 2018.
    [29]R. S. Johansson and J. R. Flanagan, "Coding and use of tactile signals from the fingertips in object manipulation tasks," Nature Reviews Neuroscience, vol. 10, pp. 345-359, May. 2009.
    [30]Freescale Semiconductor, Inc., "Miniature I2C Digital Barometer," MPL115A2 Datasheet, Feb. 2013.
    [31]Freescale Semiconductor, Inc., "Media Resistant and High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated," MPXHZ6400A Datasheet, Aug. 2005.
    [32]CFSensor, "XGZP Pressure Sensor(DIP6)".XGZP Datasheet.
    [33]CFSensor, "XGZP6847 Pressure Sensor Module".XGZP6847 Datasheet.
    [34]Microchip Technology Inc., "2.7V 4-Channel/8-Channel 10-Bit A/D Converters," MCP3004/MCP3008 Datasheet, 2007.
    [35]Tekscan, "FlexiForce® Standard Model A201".FlexiForce A201 Datasheet.
    [36]Pololu, "Pololu Dual VNH5019 Motor Driver Shield for Arduino," [Online]. Available: https://www.pololu.com/product/2507. [Accessed 15. Jul. 2019].

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE