簡易檢索 / 詳目顯示

研究生: 許仲喬
Hsu, Chung-Chiao
論文名稱: 以渦流法模擬衝擊噴流之研究
Vortex Simulations of Impinging Jets
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 渦流法小板法衝擊噴流
外文關鍵詞: vortex method, panel method, impinging jet
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用渦流法模擬平面衝擊噴流流場,主要研究目的在於探討平面衝擊噴流場之物理現象。
    本文採用隨機走步式之渦流法模擬黏性流場,配合小板法建構出上下兩板固體壁面,以及於小板外置放點渦模擬固體邊界之黏性邊界層。
    首先驗證衝擊噴流之特性。模擬結果可將流場分為三個流動區域,(1)自由噴流區,(2)衝擊區,(3)壁面噴流區。自由噴流區具有高斯分布之相似性,另外在壁面噴流區,研究結果可觀察出邊界層的發展以及速度相似性與格勒特紊流理論解相符。模擬結果與文獻實驗數據相比,發現結果相當一致,顯示本文數值方法之可靠性。並探討在不同板距、不同雷諾數對流場特性的影響,發現在同樣的雷諾數下,偏擺之振幅會隨著板距的增加而增大。而當雷諾數減小時,壁面噴流區會有迴流現象的發生。

    The evolution of impinging plane jets are simulated by discrete vortex method. The physical phenomena of impinging plane jets are carefully studied in the present study.
    The numerical scheme of vortex method with random walk is used to simulate the viscous flow field of impinging plane jets. For the boundary condition processing, the panel method is also included to construct the solid walls of the impingement and confinement plates. In the solid boundaries ,the vortices are emitted outside to satisfy the no slip requirement.
    At first, we validate the properties of impinging jets. The results show that the flow pattern can be divided into three characteristics regions : (1) free jet region, (2) impingement region, and (3) wall jet region. The free jet region has the similarity of Gaussian distribution. In addition, we can obtain the development of boundary layer and the similarity of velocity show in good agreement with Glauert theoretical solution in wall jet region. The numerical results are reasonable and consistent with those of available literatures. Then the investigation of the flow field characteristics with different nozzle-to-surface spacing and Reynolds numbers are presented. The results indicate that the larger values of nozzle-to-surface spacing accompany with the larger amplitude of flapping motion at the same Reynolds number. Moreover, the recirculation pattern will occur in wall jet regions at low Reynolds number.

    中文摘要………………………………………………………………………I 英文摘要………………………………………………………………………II 誌謝……………………………………………………………………………III 目錄……………………………………………………………………………IV 圖索引…………………………………………………………………………VII 符號說明………………………………………………………………………IX 第一章 緒論……………………………………………………………………1 1-1 研究動機與目的…………………………………………………………1 1-2 文獻回顧…………………………………………………………………3 1-2-1 衝擊噴流特性概述……………………………………………………3 1-2-2 衝擊板距高度之研究…………………………………………………5 1-2-3 雷諾數效應之研究……………………………………………………6 1-2-4 渦流法之研究…………………………………………………………7 1-3 本文架構…………………………………………………………………9 第二章 研究方法………………………………………………………………11 2-1 物理模型…………………………………………………………………11 2-2 數值模型…………………………………………………………………13 2-2-1 對流項之處理方式……………………………………………………14 2-2-2 黏性擴散項之處理方式………………………………………………17 2-2-3 邊界處理………………………………………………………………18 2-2-4 數值流程………………………………………………………………24 第三章 結果與討論……………………………………………………………25 3-1 衝擊噴流流場特性………………………………………………………25 3-1-1 數值參數探討…………………………………………………………25 3-1-2 平均速度………………………………………………………………27 3-1-3 速度相似性……………………………………………………………29 3-1-4 二階量值分析…………………………………………………………30 3-2 噴口至衝擊板間距之研究………………………………………………32 3-2-1 衝擊噴流中心流向速度………………………………………………32 3-2-2 衝擊噴流偏擺現象……………………………………………………34 3-3 雷諾數對流場特性影響…………………………………………………35 3-3-1 中心速度之演進………………………………………………………35 3-3-2 速度半幅寬發展………………………………………………………36 3-3-3 流場渦流發展…………………………………………………………37 3-3-4 壁面噴流速度發展……………………………………………………38 第四章 結論與未來展望………………………………………………………40 4-1 結論………………………………………………………………………40 4-2 未來展望…………………………………………………………………42 參考文獻……………………………………………………………………… 43 圖表彙整……………………………………………………………………… 51 自述與著作權聲明…………………………………………………………… 80

    [1] Dahlquist, A., “Axial gas turbine blade cooling with impingement/film cooling,” Project Report, MVK160, Heat and Mass Transport, 2008.
    [2] Babic, D. M., Torrance, A. A., Murray, D.B., “Soap mist jet cooling of grinding processes,” Key Engineering Materials, Vol. 291, pp. 239-244, 2005.
    [3] Bond, J.F., Mujumdar, A.S., Heiningen, A.R.P., Douglas, W.J.M., “Drying paper by impinging jets of superheated steam. Part 1:Constant drying rate in superheated steam,” J. Chemical Engineering, Vol. 72, pp. 446-451, 1994.
    [4] Polat, S. “Heat and mass transfer in impingement drying,” Drying Technology, Vol. 11, pp. 1147-1176, 1993.
    [5] Borquez, R., Wolf, W., Koller, W.D., “Impinging jet drying of pressed fish cake,” Journal of Food Engineering, Vol. 40, pp. 113-120, 1999.
    [6] Dano, Bertrand P.E. and Liburdy, James A., “Flow characteristics and heat transfer performances of a semi-confined impinging array of jets:effect of nozzle geometry,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 691-701, 2005.
    [7] Popiel, C.O., and Trass, O., “Visualization of a free and impinging round jet,” Exp. Thermal. Fluid Sci., Vol. 4, pp.253-264, 1991.
    [8] Chung, Yongmann M. and Luo, Kai.H., “Unsteady heat transfer analysis of an impinging jet ,” Transcation of the ASME journal of Heat Transfer, Vol. 124, pp.1039-1048, 2002.
    [9] Chiriac, Victor A., and Ortega, Alfonso., “A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface,” International Journal of Heat and Mass Transfer, Vol. 45, pp.1237-1248, 2002.
    [10] Gardon, R., Akfirat, J.C., “ The role of turbulence in determining the heat transfer characteristics of impinging jet,” International Journal of Heat and Mass Transfer, Vol. 8, pp. 1261-1272, 1965.
    [11] Martin, H., “Heat and mass transfer between impinging gas jets and solid surfaces,” Adv. Heat Transfer, Vol. 13, pp. 1-60, 1977.
    [12] Polat, S., Huang, B., Mujumdar, A.S., Douglas, W.J.M., “Numerical flow and heat transfer under impinging jets:A review,” Annual Review of Numerical Fluid Mechanics and Heat Transfer, Vol. 2, pp. 157-197, 1989.
    [13] Ashforth-frost, S., and Jambunathan, K., “Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 155-162, 1996.
    [14] Maurel, S., Solliec, C., “A turbulent plane jet impinging nearby and far from a flat plate,” Experiments in Fluids, Vol. 31, pp.687-696, 2001.
    [15] Glauert, M.B., “The wall jet,” J. Fluid Mech., Vol. 1, pp. 625-643, 1956.
    [16] Angioletti, M., Di Tommaso, R.M., Nino, E., Ruocco, G.,“Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets,” International Journal of Heat and Mass Transfer, Vol. 46, pp.1073-1713, 2003.
    [17] Baydar, E., Ozmen, Y., “An experimental and
    numerical investigation on a confined impinging air jet at high Reynolds numbers,” Applied
    Thermal Engineering, Vol. 25, pp. 409-421, 2005.
    [18] Serres, I., Chauveau, C., Sarh, B., and Gökalp, I., “Characterisation of confinement and impingement effects on the near field of axisymmetric jets using LDA and PIV,” 10th International Symposium Applications of
    Laser Techniques to Fluid Mechanics, 11.4 Jets.
    [19] Ashforth-Frost, S., Jambunathan, K., Whitney, C.F., “Velocity and Turbulence characteristics of a semiconfined orthogonally impinging slot jet,” Experimental Thermal and Fluid Science, Vol. 14, pp. 60-67, 1997.
    [20] Narayanan, V., Seyed-Yagoobi, J., Page, R.H., “An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow,” International Journal of Heat and Mass Transfer,Vol. 47, pp.1827-1845, 2004.
    [21] Mcnaughton, K.J.,and Sinclair, C.G., “Submerged jets in short cylindrical flow vessels,” Journal of Fluid Mechanics, Vol. 25, pp.367-375, 1966.
    [22] Beaubert, François., and Viazzo, Stéphane., “Large eddy simulation of a plane impinging jet ,” Comptes Rendus Mecanique,Vol. 330, pp.803-810, 2002.
    [23] Chiriac, Victor A.,and Alfonso Ortega., “A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface,” International Journal of Heat and Mass
    Transfer ,Vol. 45, pp. 1237-1248, 2002.
    [24] Cho, J. R., “Numerical observations of a bifurcating plane impinging jet in a confined channel ,” Journal of Visualization, Vol. 9, pp.361-362,2006.
    [25] Varieras, D., Brancher, P., Giovannini, A., “Self-sustained oscillations of a confined impinging jet,” Flow Turbulence Combust, Vol. 78, pp.1-15, 2007.
    [26] Cottet, G. H. and Koumoutsakos, P. D., Vortex Method: Theory and Practices, Cambridge University Press, 2000.
    [27] Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, 1997.
    [28] Inoue, O., “Vortex simulation of a turbulent mixing layer,” AIAA J., Vol. 23, No. 3, pp. 367-373, 1985.
    [29] Hsu, C. C., “Vortex method investigations on dynamic behaviors of forced turbulent mixing layer and planar jet,” Ph.D. Dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 1994.
    [30] Namer, I. and Otugen, M.V., “Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers,” Experiments in Fluids, Vol. 6, pp. 387-399, 1988.
    [31] Shimizu, Seiji. and Yamaguchi, Atsushi., “Discrete-vortex simulation of a two-dimensional turbulent impinging jet.” The Japan Society of Mechanical Engineers,Vol. 52, pp. 2078-2083, 1986
    [32] Tchavdarov, B.M., “Two-dimensional vortex dynamics of inviscid-viscous interaction at turbulent slot jet impingement,” International Journal of Heat and Fluid Flow ,Vol. 18, pp. 316-327, 1997.
    [33] Chorin, A.J., “Vortex sheet approximation of boundary layers.”Journal of Computational Physics, Vol. 27, pp. 428-442,1978
    [34] Kida, T., Toshima, M., Take, T., Kurata, M., “Pressure distribution on the ground by impinging two-dimensional jet due to a vortex method,” Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conferences, 1999.
    [35] Chorin, A. J., “Numerical study of slightly viscous flow,” J. Fluid Mech. Vol. 57, pp. 785-796, 1973.
    [36] Hess, J.L. and Smith, A.M.O., “Caculation of potential flow about arbitrary bodies,' Progress in Aerospace Sciences, Vol. 8, Pergamon Press, N.Y., 1966.
    [37] Leonard, A., “Vortex methods for flow simulation,” Journal of Computational Physics, Vol. 37, pp. 289-335, 1980.
    [38] Krasny, R., “A study of singularity formation in a vortex sheet by a point vortex approximation,” J. Fluid Mech., Vol. 167, pp. 65-93, 1986.
    [39] Porthouse, D.T.C., Numerical simulation of aerofoil and bluff body flows by vortex dynamics. Ph.D. Thesis, University of Newcastle upon Tyne, 1983.
    [40] Senter, J., Solliec C., “Flow field analysis of a turbulent slot air jet impinging on a moving flat surface,” International Journal of Heat and Fluid Flow, Vol. 28, pp.708-719, 2007.
    [41] Crow, S. C. and Champagme, F. H., “Orderly structure in jet turbulence,” J. Fluid Mech., Vol. 48, pp. 547-591, 1970.
    [42] Beitelmal, A.H., Shah, A.J., Saad, M.A., “Analysis of an impinging two-dimensional jet,” Journal of Heat Transfer, Vol. 128, pp. 307-310, 2006.
    [43] Barenblatt, G.I., Chorin, A.J. and Prostokishin, V.M., “The turbulent wall jet: A triple-layered structure and incomplete similarity,” Proc. Natl. Acad. Sci., Vol. 102, pp. 8850-8853, 2005.
    [44] 王健彰, “以渦流法探討微粒子在間歇噴流之擴散,” 國立成功大學機械工程研究所碩士論文, 2007.
    [45] 蔡朝安, “應用Lagrangian法於熱噴流與熱羽流之研究,” 國立成功大學機械工程研究所碩士論文, 2008.
    [46] 徐清鈺, “以 Lagrangian 方式模擬探討平面熱噴流之動力特性,” 國立成功大學機械工程研究所碩士論文, 2009.
    [47] Park, S.I., Kim, M.J., “Vortex fluid for gaseous phenomena,” Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Fluids II, pp. 261-270, 2005.

    QR CODE