| 研究生: |
黃欽威 Huang, Chin-Wei |
|---|---|
| 論文名稱: |
糖尿病高血糖狀態下之癲癇發作: 臨床與基礎研究 The Epileptic Seizures in Diabetic Hyperglycemia: Clinical and Experimental Studies |
| 指導教授: |
吳勝男
Wu, Sheng-Nan 黃朝慶 Huang, Chao-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | ATP敏感性鉀離子通道 、糖尿病高血糖 、癲癇發作 、癲癇重積 |
| 外文關鍵詞: | ATP-sensitive potassium channel, seizure, status epilepticus, diabetic hyperglycemia, diazoxide |
| 相關次數: | 點閱:118 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病是代謝性症候群之主要角色,在現代國家佔高盛行率。而糖尿病高血糖狀態下之癲癇發作,臨床上並不少見。此項併發症,常有癲癇重積狀態,若無適當處理,會造成神經學上重要的障礙。
大部份關於糖尿病高血糖狀態下之癲癇發作的了解來自於病例描述報告,並無完整追蹤期,且糖尿病高血糖與癲癇發作之復發率與嚴重度、血糖值及醣化血色素之間的關連,尚未完全清楚。我們針對糖尿病高血糖狀態相關之癲癇發作,作了完整的臨床對照分析,發現高血糖會惡化癲癇發作嚴重度,且此類型之癲癇發作與控制不良之糖尿病狀態有關,較高的醣化血色素值與癲癇之復發有相關。
動物研究指出,癲癇發作可能惡化腦損傷,造成認知功能缺損。而糖尿病高血糖本身亦可能造成認知功能缺損。我們的動物實驗,了解到糖尿病高血糖狀態下所誘發之癲癇發作比在非糖尿病狀態下所誘發者較嚴重及有較高之癲癇發作易感性。同時,糖尿病高血糖狀態下所誘發之癲癇發作會對腦部造成更大損傷,造成更大認知功能缺損。
至今糖尿病高血糖相關之癲癇發作其致病機轉未完全明瞭。我們希望能藉由探測糖尿病高血糖狀態下相關之癲癇發作之機轉,使用有效的藥物來預防,或是進行及早之治療。ATP敏感性鉀離子通道 (KATP),扮演著調節神經細胞代謝與電氣活性之重要角色,是我們的研究標的。我們的 in vitro神經元及腦海馬迴切片之研究,藉由電生理之方法,發現在正常細胞外之葡萄糖之濃度上升時,會透過KATP之關閉來使神經細胞興奮,增高興奮傳遞現象;且此興奮會為KATP之打開劑diazoxide所抑制。
我們進一步探討與證實,使用diazoxide,能對in vivo糖尿病高血糖相關之癲癇發作,有抑制之作用,且對癲癇發作之後的學習記憶的行為表現及腦損傷有保護之作用。此機轉也進一步為in vitro電生理研究與神經元模擬研究證實。
因此,對於成年之癲癇病患,應該仔細檢查是否有糖尿病。積極的血糖控制,可能會對糖尿病癲癇病患之癲癇發作之治療,有所助益。我們的實驗也再次顯現,積極的血糖控制對癲癇發作下,防治腦部損傷之重要性。而KATP之減弱可能是糖尿病高血糖相關之癲癇發作之致病機轉。因此,我們了解臨床上之高血糖相關之癲癇發作及其影響,包括其機轉,將能對糖尿病高血糖相關之癲癇發作之防治有重要貢獻。
As a major role in metabolic syndrome, diabetes is an important disease in modern society. Epileptic seizure, including status epilepticus, related to diabetic hyperglycemia (DH) is not uncommon in clinical practice. This seizure disorder deserves attention as it significantly affects neurological outcome if untreated.
Most of the clinical knowledge in the seizures in DH derived from limited case studies. The role of DH in the severity and recurrence of epileptic seizures remains unclear. In our clinical comparative study of newly diagnosed unprovoked seizures in adult patients with or without DH, we have found that DH would potentiate seizure severity and seizures in hyperglycemia tend to develop in poorly controlled diabetes. Severe seizures might be associated with recurrent seizures in patients with DH. The glycated hemoglobin might be an important factor in this setting.
Seizures might lead to cognitive impairment and DH itself is associated with cognitive deficits. It is still not known whether seizures, including status epilepticus, in state of DH would cause more extensive damage than seizures without DH. In our experimental study, we found that DH would increase seizure susceptibility, and worsen seizure severity. The brain damage in DH group was more severe than that in non-DH group, in terms of behavioral, pathological and electrophysiological aspects.
The direct mechanisms in DH-related seizures are not completely understood. ATP-sensitive potassium channels (KATP), important metabolic couplers to electrical activity, are potential mechanistic candidates. We found that increment of extracellular glucose would directly attenuate KATP in single neurons and neural network, leading to increased neuron excitability and propagation.
For the therapeutic point-of-view, we further studied if KATP opener-diazoxide could have a protective role in DH-related seizures. We found diazoxide could reduce the seizure-related damage both behaviorally and pathologically, verified by electrophysiological and simulation studies.
In conclusion, DH should be investigated in adult patients with newly diagnosed epileptic seizures and aggressive blood sugar control might benefit seizure management in patients with DH. This finding that rats with DH had more brain damage after status epilepticus than rats without DH emphasizes the importance of intensively treating DH and seizures in diabetic patients with epilepsy. This phenomenon of KATP-attenuation could be one of the underlying mechanisms of glucose-related neuron hyper-excitability and propagation. Our study identified the clinical risk factors, delineated the potential mechanism and provided a potential therapeutic gateway in treating this diabetic hyperglycemia-related seizure disorder.
1. Abulrob A, Tauskela JS, Mealing G, Brunette E, Faid K, Stanimirovic D (2005) Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution. J Neurochem 92:1477-1486.
2. American Diabetes Association (2006) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 29:S43-S48.
3. Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288-294.
4. Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol Sci 21:439-445.
5. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23:7737-7741.
6. Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243-1250.
7. Bancila V, Cens T, Monnier D, Chanson F, Faure C, Dunant Y, Bloc A (2005) Two SUR1-specific histidine residues mandatory for zinc-induced activation of the rat KATP channel. J Biol Chem 280:8793–8799.
8. Beamer N, Giraud G, Clark W, Wynn M, Coull B (1997) Diabetes, hypertension and erythrocyte aggregation in acute stroke. Cerebrovasc Dis 7: 144-149.
9. Betourne A, Bertholet AM, Labroue E, Halley H, Sun HS, Lorsignol A, Feng ZP, French RJ, Penicaud L, Lassalle JM, Frances B (2009) Involvement of hippocampal CA3 K(ATP) channels in contextual memory. Neuropharmacology 56:615-625.
10. Bhargava A, Mathias RS, McCormick JA, Dallman MF, Pearce D (2002) Glucocorticoids prolong Ca2+ transients in hippocampal-derived H19-7 neurons by repressing the plasma membrane Ca2+-ATPase-1. Mol Endocrinol 16:1629-1637.
11. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH (1994) Cerebral function in diabetes mellitus. Diabetologia 37:643–650.
12. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125-135.
13. Biessels GJ, Ter Laak MP, Kamal A, Gispen WH (2005) Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. Brain Res 1035:86-93.
14. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7:184-190.
15. Björklund A, Bondo Hansen J, Falkmer S, Grill V (2004) Openers of ATP-dependent K+-channels protect against a signal-transduction-linked and not freely reversible defect of insulin secretion in a rat islet transplantation model of Type 2 diabetes. Diabetologia 47:885-891.
16. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349-398.
17. Brick JF, Gutrecht JA, Ringel RA (1989) Reflex epilepsy and nonketotic hyperglycemia in the elderly: a specific neuroendocrine syndrome. Neurology 39: 394-399.
18. Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J (1997) Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 768:249-256.
19. Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706-718.
20. Chen JW, Wasterlain CG (2006) Status epilepticus: pathophysiology and management in adults. Lancet Neurol 5:246-256.
21. Commission on the Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489-501.
22. Covolan L, Mello LE (2000) Temporal profile of neuron injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 39:133-152.
23. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143-157.
24. Dabrowski M, Larsen T, Ashcroft FM, Bondo Hansen J, Wahl P (2003) Potent and selective activation of the pancreatic beta-cell type K(ATP) channel by two novel diazoxide analogues. Diabetologia 46:1375-1382.
25. Dahlem YA, Hanke W (2005) Intrinsic optical signal of retinal spreading depression: second phase depends on energy metabolism and nitric oxide. Brain Res 1049:15-24.
26. Danielsson BR, Lansdell K, Patmore L, Tomson T (2005) Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res 63:17-25.
27. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842-1852.
28. Duckrow, RB (1995) Decreased cerebral blood flow during acute hyperglycemia. Brain Res 703:145-150.
29. Dunn-Meynell AA, Rawson NE, Levin BE (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 814:41–54.
30. Eaton MJ, Skatchkov SN, Brune A, Biedermann B, Veh RW, Reichenbach A (2002) SURI and Kir6.1 subunits of KATP channels are co-localised in retinal glial (Muller) cells. Neuroreport 13:57–60.
31. Ermentrout GB (2002) Simulating, analyzing, and animating dynamical system: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
32. Eves EM, Tucker MS, Roback JD, Downen M, Rosner MR, Wainer BH (1992) Immortal rat hippocampal cell lines exhibit neuronal and glial lineages and neurotrophin gene expression. Proc Natl Acad Sci USA 89:4373–4377.
33. Finch CE, Cohen DM (1997) Aging, metabolism and Alzheimer disease: review and hypotheses. Exp Neurol 143:82-102.
34. Folbergrova J, Ingvar M, Siesjo BK (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 37:1228-1238.
35. Ford ES (2005) Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 28:2745-2749.
36. Freiman TM, Kukolja J, Heinemeyer J, Eckhardt K, Aranda H, Rominger A, Dooley DJ, Zentner J, Feuerstein TJ (2001) Modulation of K+-evoked [3H]-noradrenaline release from rat and human brain slices by gabapentin: involvement of KATP channels. Naunyn-Schmiedeberg’s Arch Pharmacol 363:537–542.
37. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542-549.
38. Grant C, Warlow C (1985) Focal epilepsy in diabetic non-ketotic hyperglycaemia. Br. Med. J 290:1204-1205.
39. Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction and elevation of ketone bodies. J Neurochem 86:529-537.
40. Gribble FM, Reimann F, Ashfield R, Ashcroft FM (2000) Nucleotide modulation of pinacidil stimulation of the cloned KATP channel, Kir6.2/SUR2A. Mol Pharmacol 57:1256–1261.
41. Griesemer D, Zawar C, Neumcke B (2002) Cell-type specific depression of neuronal excitability in rat hippocampus by activation of ATP-sensitive potassium channels. Eur Biophys J 31:467-477.
42. Groeneveld Y, Petri H, Hermans, Springer MP (1999) Relationship between blood glucose level and mortality in type 2 diabetes mellitus: a systematic review. Diabet Med 16:2-13.
43. Harden CL, Rosenbaum DH, Daras M (1991) Hyperglycemia presenting with occipital seizures. Epilepsia 32:215-220.
44. Haut SR, Shinnar S, Moshe SL (2005) Seizure clustering: risks and outcomes. Epilepsia 46:146-149.
45. Helmstaedter C (2007) Cognitive outcome of status epilepticus in adults. Epilepsia S48: 85-90.
46. Henningsen L, Johansen K (1978) Growth hormone secretion and diazoxide induced hyperglycaemia. Horm Metab Res 10:565-566.
47. Hernandez-Sanchez C, Basile AS, Fedorova I, Arima H, Stannard B, Fernandez AM, Ito Y, LeRoith D (2001) Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proc Natl Acad Sci USA 98:3549–3554.
48. Hicks GA, Hudson AL, Henderson G (1994) Localization of high affinity [3H]glibenclamide binding sites within the substantia nigra zona reticulata of the rat brain. Neuroscience 61:285–292.
49. Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equation. SIAM Review 43:525-546.
50. Hu K, Huang CS, Jan YN, Jan LY (2003) ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 38:417-432.
51. Huang CW, Huang CC, Liu YC, Wu SN (2004) Inhibitory effect of lamotrigine on A-type potassium current in hippocampal neuron-derived H19-7 cells. Epilepsia 45:729-736.
52. Huang CW, Huang CC, Huang MH, Wu SN, Hsieh YJ (2005) Sodium cyanate-induced opening of large conductance of calcium-activated potassium channels in hippocampal neuron-derived H19-7 cells. Neurosci Lett 377:110-114.
53. Huang CW, Hsieh YJ, Pai MC, Tsai JJ, Huang CC (2005) Non-ketotic hyperglycemia-related epilepsia partialis continua with ictal unilateral parietal hyperperfusion. Epilepsia 46:1843-1844.
54. Huang CW, Huang CC, Wu SN (2006a) The Opening Effect of Pregabalin on ATP-Sensitive Potassium Channels in Differentiated Hippocampal Neuron-Derived H19-7 Cells. Epilepsia 47:720-726.
55. Huang CW, Hsieh YJ, Huang CC, Tsai JJ (2006b) Non-ketotic hyperglycemia-related paroxysmal bilateral hand paresthesia misdiagnosed as diabetic neuropathy. Neurol Sci 27:180-182.
56. Huang CW, Hsieh YJ, Tsai JJ, Huang CC (2006c) The effect of lamotrigine on field potentials, propagation and long-term potentiation in rat prefrontal cortex in multi-electrode recording. J Neurosci Res 83:1141-1150.
57. Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: The role of ATP-sensitive potassium channels. J Neurosci Res 85:1468-1477.
58. Huang CW, Tsai JJ, Ou HY, Wang ST, Cheng JT, Wu SN, Huang CC (2008a) Diabetic Hyperglycemia is associated with the severity of epileptic seizures in adults. Epilepsy Res 79:71-77.
59. Huang CW, Huang CC, Lin MW, Tsai JJ, Wu SN (2008b) The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int J Neuropsychopharmacol 11:597-610.
60. Huang CW, Cheng JT, Tsai JJ, Wu SN, Huang CC (2009) Diabetes aggravates epileptic seizures and status epilepticus-induced hippocampal damage. Neurotox Res 15:71-81.
61. Jang IS, Nakamura M, Ito Y, Akaike N (2006) Presynaptic GABAa receptors facilitate spontaneous glutamate release from presynaptic terminals on mechanically dissociated rat CA3 pyramidal neurons. Neuroscience 138:25–35.
62. Jiang K, Shui Q, Xia Z, Yu Z (2004) Changes in the gene and protein expression of K(ATP) channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling. Brain Res Mol Brain Res 128:83-89.
63. Kamal A, Biessels GJ, Duis SE, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43:500-506.
64. Kamal A, Biessels GJ, Gispen WH, Ramakers GM (2006) Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res 1073-1074:276-280.
65. Kim B, Leventhal PS, Saltiel AR, Feldmann EL (1997) Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J Biol Chem 272:21268-21273.
66. Lavin PJ (2005) Hyperglycemic hemianopia: a reversible complication of non-ketotic hyperglycemia. Neurology 65:616-619.
67. Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611-623.
68. Lee K, Brownhill V, Richardson PJ (1997) Antidiabetic sulphonylureas stimulate acetylcholine release from striatal cholinergic interneurones through inhibition of KATP channel activity. J Neurochem 69:1774-1776.
69. Lehmann TN, Gabriel S, Eilers A, Njunting M, Kovacs R, Schulze K, Lanksch WR, Heinemann U (2001) Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci 14:83-95.
70. Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 557:473-487.
71. Levin BE, Dunn-Meynell AA (1998) Effect of streptozotocin-induced diabetes on rat brain sulfonylurea binding sites. Brain Res Bull 46:513-518.
72. Liss B, Roeper J (2001) A role for neuronal K(ATP) channels in metabolic control of the seizure gate. Trends Pharmacol Sci 22:599-601.
73. Liu M, Seino S, Kirchgessner AL (1999) Identification and characterization of glucoresponsive neurons in the enteric nervous system J Neurosci 19:10305–10317.
74. Loeb JN (1974) The hyperosmolar state. N Engl J Med 290:1184-1187.
75. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 27:3618-3625.
76. Maccario M, Messis CP, Vastola EF (1965) Focal seizures as a manifestation of hyperglycemia without ketoacidosis. Neurology 15:195-206.
77. Maedler K, Størling J, Sturis J, Zuellig RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY (2004) Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53:1706-1713.
78. Magariños AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 97:11056-11061.
79. Mandrup-Poulsen T (1998) Diabetes. BMJ 316:1221-1225.
80. Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D'Amico M (2004) Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 53:454-462.
81. Margineanu DG, Niespodziany I, Wulfert E (1998) Hippocampal slices from long-term streptozotocin-injected rats are prone to epileptiform responses. Neurosci Lett 252:183-186.
82. Matsumoto N, Komiyama S, Akaike N (2002) Pre- and Post-synaptic ATP-sensitive potassium channels during metabolic inhibition of rat hippocampal CA1 neurons. J Physiol 541:511-520.
83. Mattia D, Nagao T, Rogawski MA, Avoli M (1994) Potassium channel activators counteract anoxic hyperexcitability but not 4-aminopyridine-induced epileptiform activity in the rat hippocampal slice. Neuropharmacology 33:1515-1522.
84. McClelland D, Evans RM, Barkworth L, Martin DJ, Scott RH (2004) A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats. BMC Pharmacol 4:14.
85. McCormick DA, Huguenard J (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiology 68:1384-1400.
86. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507-512.
87. Miki T, Seino S. 2005. Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 38:917-925.
88. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681-1687.
89. Moreau C, Prost AL, Derand R, Vivaudou M (2005) SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38:951-963.
90. Morrione A, Romano G., Navarro M, Reiss K, Valentinis B, Dews M, Eves E, Rosner MR, Baserga R (2000) Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Cancer Res 60:2263-2272.
91. Mourre C, Widmann C, Lazdunski M (1990) Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum. Brain Res 519:29–43.
92. Mraovitch S, Calando Y, Régnier A, Lamproglou I, Vicaut E (2005) Post-seizures amygdaloallocortical microvascular lesion leading to atrophy and memory impairment. Neurobiol Dis 19:479-489.
93. Mukai E, Ishida H, Kato S, Tsuura Y, Fujimoto S, Ishida-Takahashi A, Horie M, Tsuda K, Seino Y (1998) Metabolic inhibition impairs ATP-sensitive K+ channel block by sulfonylurea in pancreatic beta-cells. Am J Physiol 274:E38-44.
94. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237:251-257.
95. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643-2653.
96. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470-476.
97. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93:61-67.
98. Okada M, Zhu G, Hirose S, Ito KI, Murakami T, Wakui M, Kaneko S (2003) Age-dependent modulation of hippocampal excitability by KCNQ channels. Epilepsy Res 53:81–94.
99. Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012-14022.
100. Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM Jr, Harik SI (1992) Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab 12:887-899.
101. Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM (1998) What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clin Chem 44:1951-1958.
102. Pielen A, Kirsch M, Hofmann H, Feuerstein TJ, Lagreze WA (2004) Retinal ganglion cell survival is enhanced by gabapentin-lactam in vitro: evidence for involvement of mitochondrial KATP channels. Graefes Arch Clin Exp Ophthalmol 242:240-244.
103. Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60.
104. Pitkanen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier Academic Press, Burlington.
105. Pitsch J, Schoch S, Gueler N, Flor PJ, van der Putten H, Becker AJ (2007) Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiol Dis 26:623-633.
106. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026-1031.
107. Priel MR, Bortolotto ZA, Cavalheiro EA (1991) Effects of systemic glucose injection on the development of amygdala kindling in rats. Behav Neural Biol 56: 314-318.
108. Qiu C, Cotch MF, Sigurdsson S, Garcia M, Klein R, Jonasson F, Klein BE, Eiriksdottir G, Harris TB, van Buchem MA, Gudnason V, Launer LJ (2008) Retinal and cerebral microvascular signs and diabetes: the age, gene/environment susceptibility-Reykjavik study. Diabetes 57:1645-1650.
109. Quinta-Ferreira ME, Matias CM (2005) Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses. Brain Res 1047:1-9.
110. Raffo E, Koning E, Nehlig A (2004) Postnatal maturation of cytochrome oxidase and lactate dehydrogenase activity and age-dependent consequences of lithium-pilocarpine status epilepticus in the rat: a regional histoenzymology study. Pediatr Res 56:647-655.
111. Raza M, Blair RE, Sombati S, Carter DS, Deshpande LS, DeLorenzo RJ (2004) Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA 101:17522-17527.
112. Reynolds K, He J (2005) Epidemiology of the metabolic syndrome. Am J Med Sci 330:273-279.
113. Rowe IC, Treherne JM, Ashford ML (1996) Activation by intracellular ATP of a potassium channel in neurones from rat basomedial hypothalamus. J Physiol 490:97-113.
114. Saaddine JB, Cadwell B, Gregg EW, Engelgau MM, Vinicor F, Imperatore G, Narayan, KM (2006) Improvements in diabetes processes of care and intermediate outcomes: United States, 1988-2002. Ann Intern Med 144:465-474.
115. Santiago JF, Carvalho FF, Perosa SR, Siliano MR, Cruz JW, Fernandes MJ, Cavalheiro EA, Amado D, da Graça Naffah-Mazzacoratti M (2006) Effect of glycemic state in rats submitted to status epilepticus during development. Arq Neuropsiquiatr 64:233-239.
116. Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7:91-94.
117. Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53:91-101.
118. Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362.
119. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81:133-176.
120. Shimono K, Brucher F, Granger R, Lynch G, Taketani M (2000) Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci 20:8462–8473.
121. Shoji S (1992) Glucose regulation of synaptic transmission in the dorsolateral septal nucleus of the rat. Synapse 12:322–332.
122. Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655-664.
123. Singh BM, Gupta DR, Strobos RJ (1973) Nonketotic hyperglycemia and epilepsia partialis continua. Arch Neurol 29:187-190.
124. Singh BM, Strobos RJ (1989) Epilepsia partialis continua associated with nonketotic hyperglycemia: clinical and biochemical profile of 21 patients. Ann Neurol 8:155-160.
125. Soundarapandian MM, Wu D, Zhong X, Petralia RS, Peng L, Tu W, Lu Y (2007) Expression of functional Kir6.1 channels regulates glutamate release at CA3 synapses in generation of epileptic form of seizures. J Neurochem 103:1982-1988.
126. Stafstrom CE (2003) Hyperglycemia Lowers Seizure Threshold. Epilepsy Curr 3: 148–149.
127. Starr JM, Wardlaw J, Ferguson K, Mac- Lullich A, Deary IJ, Marshall I (2003) Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74:70-76.
128. Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301-313.
129. Stewart R, Liolista D (1999) Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 16:93–112.
130. Sun HS, Feng ZP, Miki T, Seino S, French RJ (2006) Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive Kt channels. J Neurophysiol 95:2590-2601.
131. Suzuki C, Ozaki I, Tanosaki M, Suda T, Baba M, Matsunaga M (2000) Peripheral and central conduction abnormalities in diabetes mellitus. Neurology 54:1932-1937.
132. Swan JH, Meldrum BS, Simon RP (1986) Hyperglycemia does not augment neuronal damage in experimental status epilepticus. Neurology 36:1351-1354.
133. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, Witte DR, Fuller JH, EURODIAB Prospective Complications Study Group (2005) Vascular risk factors and diabetic neuropathy. N Engl J Med 352:341-350.
134. Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313-330.
135. Tiamkao S, Pratipanawatr T, Tiamkao S, Nitinavakarn B, Chotmongkol V, Jitpimolmard S (2003) Seizures in nonketotic hyperglycaemia. Seizure 12:409-410.
136. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36-45.
137. Treherne JM, Ashford ML (1991) The regional distribution of sulphonylurea binding sites in rat brain. Neuroscience 40:523-531.
138. Trudeau F, Gagnon S, Massicotte G (2004) Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol 490:177-186.
139. Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol 546:665-675.
140. Tutka P, Sawiniec J, Kleinrok Z (1998) Experimental diabetes sensitizes mice to electrical- and bicuculline-induced convulsions. Pol J Pharmacol 50:92-93.
141. Vamecq J, Vallee L, Lesage F, Gressens P, Stables JP (2005) Antiepileptic popular ketogenic diet: emerging twists in an ancient story. Prog Neurobiol 75:1-28.
142. Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K (2007) The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 20:194-202.
143. Venna N, Sabin TD (1981) Tonic focal seizures in nonketotic hyperglycemia of diabetes mellitus. Arch Neurol 38:512–514.
144. Warner G, Figgitt DP (2005) Pregabalin: as adjunctive treatment of partial seizures. CNS Drugs19:265-72.
145. Wickenden AD (2002) Potassium channels as anti-epileptic drug targets. Neuropharmacology 43:1055-1060.
146. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362-2374.
147. White HS, Woodbury DM, Chen CF, Kemp JW, Chow SY, Yen-Chow YC (1986) Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Adv Neurol 44:695-712.
148. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287:2563-2569.
149. Wu SN, Jan CR, Li HF, Chiang HT (2000a) Characterization of inhibition by risperidone of the inwardly rectifying K+ current in pituitary GH3 cells. Neuropsychopharmacology 23:676-689.
150. Wu SN, Li HF, Chiang HT (2000b) Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells. J Membr Biol 178:205-214.
151. Wu SN, Chang HD (2006) Diethyl pyrocarbonate, a histidine-modifying agent, directly stimulates activity of ATP-sensitive potassium channels in pituitary GH3 cells. Biochem Pharmacol 71:615-623.
152. Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR (2000) Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J Neuroendocrinol 12:263-272.
153. Yamada KA, Rothman SM (1992) Diazoxide blocks glutamate desensitization and prolongs excitatory postsynaptic currents in rat hippocampal neurons. J Physiol 458:385-407.
154. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546.
155. Yamada K, Inagaki N (2005) Neuroprotection by KATP channels. J Mol Cell Cardiol 38:945–949.
156. Yang XJ, Kow LM, Funabashi T, Mobbs CV (1999) Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 48:1763–1772.
157. Zarrindast MR, Ebrahimi M, Khalilzadeh A (2006) Influence of ATP-sensitive potassium channels on lithium state-dependent memory of passive avoidance in mice. Eur J Pharmacol 550:107-111.
158. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 514:327–341.
159. Zhang H, Verkman AS (2008) Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol Cell Neurosci 37:1-10.
160. Zhao M, Yang H, Jiang X, Zhou W, Zhu B, Zeng Y, Yao K, Ren C (2008) Lipofectamine RNAiMAX: an efficient siRNA transfection reagent in human embryonic stem cells. Mol Biotechnol 40:19-26.
161. Zupan G, Pilipović K, Hrelja A, Peternel S (2008) Oxidative stress parameters in different rat brain structures after electroconvulsive shock-induced seizures. Prog Neuropsychopharmacol Biol Psychiatry 32:771-777.