| 研究生: |
趙如意 Chao, Ru-Yi |
|---|---|
| 論文名稱: |
探討膜電位依賴性鉀離子通道Kv2.1的表現量增加對MPTP所誘導帕金森氏症狀中神經退化的相關性 Increased expression of Kv2.1 channel contributes to nigrostriatal degeneration in the MPTP mouse model of Parkinson’s disease |
| 指導教授: |
陳珮君
Chen, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 黑體紋狀體路徑 、帕金森氏症 、電位敏感的鉀離子通道Kv2.1 、細胞凋亡 |
| 外文關鍵詞: | Nigrostriatal pathway, Kv2.1 channel, apoptosis |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症已知是一種運動障礙疾病,而這個疾病的發生是由於大腦黑質區的多巴胺神經元缺失和位於紋狀體的多巴胺神經末梢退化,使多巴胺分泌不足所導致的。Kv2.1為延遲整流鉀離子通道,主要功能藉由調控神經興奮、動作電位和強直放電。然而延遲整流鉀離子電流在帕金森氏症所導致黑質紋狀體退化中扮演的角色仍然是不確定的。在本篇研究中,我們發現當使用亞慢性MPTP處理時,電位敏感的鉀離子通道Kv2.1的表現量增加,並觀察到黑質區和紋狀體的電位敏感的鉀離子通道有擴散的現象。接下來我們想知道電位敏感的鉀離子通道Kv2.1的增加是否對MPTP所導致的多巴胺神經元退化有關連性,因此我們對進行亞慢性MPTP毒性的老鼠使用前處理和後處理電位敏感的鉀離子通道Kv2.1的抑制劑GxTx,發現在多巴胺神經元和其神經末梢起了保護的作用,意味著抑制電位敏感的鉀離子通道Kv2.1可以保護多巴胺神經免受MPTP的毒性傷害。另外在離體實驗,我們給予MPP+48小時給藥增加電位敏感的鉀離子通道Kv2.1之表現量,改變了通道分布情形,並且促使細胞凋亡的鉀電流增加在巴胺神經母細胞株MN9D細胞株中,並且在加入其抑制劑GxTx後抑制了MPP+的毒性傷害。綜合我們的研究結果,我們發現MPTP/MPP+增加了電位敏感的鉀離子通道Kv2.1表現量並且改變了其位置,促使黑質紋狀體的多巴胺神經元和其神經末梢退化。相反地,當抑制電位敏感的鉀離子通道Kv2.1時可以保護多巴胺神經免受MPTP的毒性傷害。而其中的機制是由於MPTP/MPP+增加了電位敏感的鉀離子通道Kv2.1表現量並且改變了其位置,關係到腺苷單磷酸活化蛋白激酶AMPK的磷酸化和剪切酶cleave caspase 3 的增加,促使氧化壓力增加和能量的減少,缺少能量時進而活化AMPK來調控電位敏感的鉀離子通道Kv2.1而導致細胞凋亡。更重要的是藉由Kv2.1的抑制劑GxTx可以降低多巴胺神經元和其神經末梢的受損,保護多巴胺神經免受MPTP的毒性所導致黑質區和紋狀體的神經退化。
Parkinson’s disease which is known as the movement disorder because of loss of dopaminergic neurons (DAnergic neurons) in the substantia nigra pars compacta (SNpc) and degeneration of DAnergic terminals in the dorsal striatum. Kv2.1 is a predominant delayed rectifier K+ current that regulates neuronal excitability, action potential duration, and tonic spiking. The mechanism underlying a delayed rectifier K+ current in the degeneration of nigrostriatal degeneration of Parkinson’s disease remains uncertain. Here, we show that subchronic MPTP treatment increases channel expression and diffusion of Kv2.1. Next, to understand whether this increase of Kv2.1 channel is necessary for MPTP-induced nigorstriatal degeneration, mice pre or post-treated with Kv2.1 blocker (Guangxitoxin 1E, GxTx) following by subchronic MPTP regimen showed protective effects on SNpc DA neurons and DAnergic axon terminal in the STR, suggesting that inhibition of Kv2.1 channel protects DA neurons from MPTP toxicity. In vitro, effects of forty-eight hours of MPP+ treatment were shown that an increase in expression of Kv2.1 channel, altered distribution and induced apoptotic potassium conductance in the MN9D cells and GxTx pretreatment inhibited these effects of MPP+. In summary, MPTP/MPP+ increased expression and localization of Kv2.1 channel to promote nigrostriatal degeneration. Conversely, inhibition of Kv2.1 channel protects DA neurons in the SNpc and DAnergic terminals in the STR from MPTP insult. This mechanism underlying in which MPTP/MPP+ increased Kv2.1 channel expression and localization are correlated with AMPK phosphorylation and cleave caspase 3 elevation, which further support that oxidative stress and energy deprivation activated AMPK modify Kv2.1 channels to induce cell apoptosis. Most importantly, inhibition of Kv2.1 channels with specific blocker GxTx provide protects nigrostriatal degeneration in the subchronic MPTP mouse model.
1. Luo, S.X. and E.J. Huang, Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am J Pathol, 2016. 186(3): p. 478-88.
2. Svenningsson, P., et al., DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol, 2004. 44: p. 269-96.
3. Henchcliffe, C. and M.F. Beal, Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol, 2008. 4(11): p. 600-9.
4. Vila, M., D. Ramonet, and C. Perier, Mitochondrial alterations in Parkinson's disease: new clues. J Neurochem, 2008. 107(2): p. 317-28.
5. Schapira, A.H., Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol, 2008. 7(1): p. 97-109.
6. Betarbet, R., et al., Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci, 2000. 3(12): p. 1301-6.
7. Przedborski, S., et al., MPTP as a mitochondrial neurotoxic model of Parkinson's disease. J Bioenerg Biomembr, 2004. 36(4): p. 375-9.
8. Keeney, P.M., et al., Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci, 2006. 26(19): p. 5256-64.
9. Mann, V.M., et al., Complex I, iron, and ferritin in Parkinson's disease substantia nigra. Ann Neurol, 1994. 36(6): p. 876-81.
10. Kraytsberg, Y., et al., Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 2006. 38(5): p. 518-20.
11. Soong, N.W., et al., Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet, 1992. 2(4): p. 318-23.
12. Kemp, B.E., et al., AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans, 2003. 31(Pt 1): p. 162-8.
13. Crute, B.E., et al., Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem, 1998. 273(52): p. 35347-54.
14. Stein, S.C., et al., The regulation of AMP-activated protein kinase by phosphorylation. Biochem J, 2000. 345 Pt 3: p. 437-43.
15. Woods, A., et al., The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett, 1996. 397(2-3): p. 347-51.
16. Cheung, P.C., et al., Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J, 2000. 346 Pt 3: p. 659-69.
17. Carling, D., AMP-activated protein kinase: balancing the scales. Biochimie, 2005. 87(1): p. 87-91.
18. Fryer, L.G. and D. Carling, AMP-activated protein kinase and the metabolic syndrome. Biochem Soc Trans, 2005. 33(Pt 2): p. 362-6.
19. Han, Y., et al., Redox regulation of the AMP-activated protein kinase. PLoS One, 2010. 5(11): p. e15420.
20. Wu, S.B., et al., Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta, 2014. 1840(4): p. 1331-44.
21. Kaminskyy, V.O. and B. Zhivotovsky, Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal, 2014. 21(1): p. 86-102.
22. Green, D.R., L. Galluzzi, and G. Kroemer, Cell biology. Metabolic control of cell death. Science, 2014. 345(6203): p. 1250256.
23. Meredith, G.E. and D.J. Rademacher, MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis, 2011. 1(1): p. 19-33.
24. Brichta, L. and P. Greengard, Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update. Front Neuroanat, 2014. 8: p. 152.
25. Damier, P., et al., The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain, 1999. 122 ( Pt 8): p. 1437-48.
26. Duda, J., C. Potschke, and B. Liss, Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem, 2016. 139 Suppl 1: p. 156-178.
27. Day, M., et al., Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci, 2008. 28(45): p. 11603-14.
28. Trimmer, J.S., Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron, 2015. 85(2): p. 238-56.
29. Du, J., et al., Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol, 2000. 522 Pt 1: p. 19-31.
30. Hwang, P.M., et al., Contrasting immunohistochemical localizations in rat brain of two novel K+ channels of the Shab subfamily. J Neurosci, 1993. 13(4): p. 1569-76.
31. Lobo, M.K., Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. Int Rev Neurobiol, 2009. 89: p. 1-35.
32. Nisenbaum, E.S. and C.J. Wilson, Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci, 1995. 15(6): p. 4449-63.
33. Pedarzani, P. and J.F. Storm, Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol, 1995. 74(6): p. 2749-53.
34. Pineda, J.C., R.S. Waters, and R.C. Foehring, Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J Neurophysiol, 1998. 79(5): p. 2522-34.
35. Saar, D., Y. Grossman, and E. Barkai, Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur J Neurosci, 1998. 10(4): p. 1518-23.
36. Vacher, H., D.P. Mohapatra, and J.S. Trimmer, Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev, 2008. 88(4): p. 1407-47.
37. Trimmer, J.S. and K.J. Rhodes, Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol, 2004. 66: p. 477-519.
38. Trimmer, J.S., Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10764-8.
39. Lim, S.T., et al., A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron, 2000. 25(2): p. 385-97.
40. Sarmiere, P.D., C.M. Weigle, and M.M. Tamkun, The Kv2.1 K+ channel targets to the axon initial segment of hippocampal and cortical neurons in culture and in situ. BMC Neurosci, 2008. 9: p. 112.
41. Malin, S.A. and J.M. Nerbonne, Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci, 2002. 22(23): p. 10094-105.
42. Murakoshi, H. and J.S. Trimmer, Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci, 1999. 19(5): p. 1728-35.
43. Misonou, H., et al., Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. J Neurosci, 2005. 25(48): p. 11184-93.
44. O'Connell, K.M., et al., Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. J Neurosci, 2006. 26(38): p. 9609-18.
45. Misonou, H., S.M. Thompson, and X. Cai, Dynamic regulation of the Kv2.1 voltage-gated potassium channel during brain ischemia through neuroglial interaction. J Neurosci, 2008. 28(34): p. 8529-38.
46. Mulholland, P.J., et al., Glutamate transporters regulate extrasynaptic NMDA receptor modulation of Kv2.1 potassium channels. J Neurosci, 2008. 28(35): p. 8801-9.
47. Misonou, H., et al., Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci, 2004. 7(7): p. 711-8.
48. Park, K.S., et al., Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science, 2006. 313(5789): p. 976-9.
49. O'Connell, K.M., R. Loftus, and M.M. Tamkun, Localization-dependent activity of the Kv2.1 delayed-rectifier K+ channel. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12351-6.
50. Fox, P.D., R.J. Loftus, and M.M. Tamkun, Regulation of Kv2.1 K(+) conductance by cell surface channel density. J Neurosci, 2013. 33(3): p. 1259-70.
51. Yu, S.P., L.M. Canzoniero, and D.W. Choi, Ion homeostasis and apoptosis. Curr Opin Cell Biol, 2001. 13(4): p. 405-11.
52. Mohapatra, D.P. and J.S. Trimmer, The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. J Neurosci, 2006. 26(2): p. 685-95.
53. Pal, S., et al., Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci, 2003. 23(12): p. 4798-802.
54. He, K., et al., Regulation of Pro-Apoptotic Phosphorylation of Kv2.1 K+ Channels. PLoS One, 2015. 10(6): p. e0129498.
55. Shah, N.H., et al., Cyclin e1 regulates Kv2.1 channel phosphorylation and localization in neuronal ischemia. J Neurosci, 2014. 34(12): p. 4326-31.
56. McCord, M.C., et al., Syntaxin-binding domain of Kv2.1 is essential for the expression of apoptotic K+ currents. J Physiol, 2014. 592(16): p. 3511-21.
57. McCord, M.C. and E. Aizenman, Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci U S A, 2013. 110(34): p. 13988-93.
58. Chen, P.C., et al., Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical role for the astrocyte. Proc Natl Acad Sci U S A, 2009. 106(8): p. 2933-8.
59. Choi, H.K., et al., Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Proc Natl Acad Sci U S A, 1992. 89(19): p. 8943-7.
60. Rick, C.E., et al., Differentiated dopaminergic MN9D cells only partially recapitulate the electrophysiological properties of midbrain dopaminergic neurons. Dev Neurosci, 2006. 28(6): p. 528-37.
61. Minokoshi, Y., et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 2002. 415(6869): p. 339-43.
62. Anderson, K.A., et al., Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab, 2008. 7(5): p. 377-88.
63. Ikematsu, N., et al., Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc Natl Acad Sci U S A, 2011. 108(44): p. 18132-7.
64. Wu, Y., S.L. Shyng, and P.C. Chen, Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic beta-Cells. J Biol Chem, 2015. 290(50): p. 29676-90.
65. Swartz, K.J. and R. MacKinnon, An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron, 1995. 15(4): p. 941-9.
66. Tilley, D.C., et al., Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. Proc Natl Acad Sci U S A, 2014. 111(44): p. E4789-96.
67. Obeso, J.A., et al., The basal ganglia in Parkinson's disease: current concepts and unexplained observations. Ann Neurol, 2008. 64 Suppl 2: p. S30-46.
68. Obeso, J.A., et al., Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord, 2008. 23 Suppl 3: p. S548-59.
69. Rodriguez-Oroz, M.C., et al., Neuronal activity of the red nucleus in Parkinson's disease. Mov Disord, 2008. 23(6): p. 908-11.
70. Guridi, J., et al., L-dopa-induced dyskinesia and stereotactic surgery for Parkinson's disease. Neurosurgery, 2008. 62(2): p. 311-23; discussion 323-5.
71. Dawson, T.M. and V.L. Dawson, Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003. 302(5646): p. 819-22.
72. Hunot, S. and E.C. Hirsch, Neuroinflammatory processes in Parkinson's disease. Ann Neurol, 2003. 53 Suppl 3: p. S49-58; discussion S58-60.
73. Dawson, T.M. and V.L. Dawson, Neuroprotective and neurorestorative strategies for Parkinson's disease. Nat Neurosci, 2002. 5 Suppl: p. 1058-61.
74. Chiba, K., et al., Studies on the molecular mechanism of bioactivation of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Drug Metab Dispos, 1985. 13(3): p. 342-7.
75. Dauer, W. and S. Przedborski, Parkinson's disease: mechanisms and models. Neuron, 2003. 39(6): p. 889-909.
76. Chen, P.C., Y.N. Kryukova, and S.L. Shyng, Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). The Journal of biological chemistry, 2013. 288(47): p. 34098-109.
77. Park, S.H., et al., Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic beta-cells. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(31): p. 12673-8.
78. Kimm, T., Z.M. Khaliq, and B.P. Bean, Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons. J Neurosci, 2015. 35(50): p. 16404-17.
79. Yao, H., et al., The Kv2.1 channels mediate neuronal apoptosis induced by excitotoxicity. J Neurochem, 2009. 108(4): p. 909-19.
80. Shen, Q.J., et al., Contribution of Kv channel subunits to glutamate-induced apoptosis in cultured rat hippocampal neurons. J Neurosci Res, 2009. 87(14): p. 3153-60.
81. Jiao, S., et al., cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J Neurochem, 2007. 100(4): p. 979-91.
82. Redman, P.T., et al., Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J Physiol, 2009. 587(Pt 18): p. 4393-404.
83. Redman, P.T., et al., Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3568-73.
84. Norris, C.A., et al., Regulation of neuronal proapoptotic potassium currents by the hepatitis C virus nonstructural protein 5A. J Neurosci, 2012. 32(26): p. 8865-70.
85. Jiang, T., Q. Sun, and S. Chen, Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol, 2016. 147: p. 1-19.
86. Ahlijanian, M.K., R.E. Westenbroek, and W.A. Catterall, Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron, 1990. 4(6): p. 819-32.
87. Chen, R., A. Robinson, and S.H. Chung, Binding of hanatoxin to the voltage sensor of Kv2.1. Toxins (Basel), 2012. 4(12): p. 1552-64.
88. Lee, S., et al., Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels. Biochemistry, 2010. 49(25): p. 5134-42.