| 研究生: |
劉晉生 Liu, Ching-Sheng |
|---|---|
| 論文名稱: |
鋅鐵氧反鐵磁的磁性質:第一原理計算 Magnetic properties of ZnFe2O4: First-principles calculations |
| 指導教授: |
鄭靜
Cheng, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 第一原理 、反鐵磁 、鋅鐵氧 |
| 外文關鍵詞: | Anti-ferromagnetic, First principles, ZnFe2O4 |
| 相關次數: | 點閱:103 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文旨在說明,利用構想出的各種不同磁性組態來研究ZnFe2O4這種物質的磁性與結構特性。我們發現計算出ZnFe2O4最低能量結構與一般認為它應有的磁性結構不同。利用海森堡模型並考慮到第四鄰近鄰居所產生之交互作用現象來描述這七種不同的磁性結構總能量,因而獲得材料中鐵原子間的磁矩交互作用能。若只考慮到第二鄰近鄰居之影響,我們發現第一鄰近鄰居與第二鄰近鄰居所引起的交互作用性質分別屬於反鐵磁性與鐵磁性,而在作用能大小上第一鄰近大約為第二鄰近的三倍大。然而當我們在ZnFe2O4七種不同磁性組態下,把第四鄰近鄰居對總能量的影響考慮進去時,發現計算出來的交互作用能較無一致性之結果。同時我們用不同的限制條件(如:固定形狀、允許形狀改變、只允許氧原子位置改變)來鬆弛結構,使其達到最佳化過程也發現與上述相同之結論。在我們使用海森堡模型並考慮到第四鄰近鄰居之作用後,所產生的不一致性說明了材料在磁性排列上之複雜性,而未來的研究上我們應該把不同的交換路徑影響與磁矩間可能並非各向均為線性排列關係等因素考慮進去。
In this thesis, structures of different configurations in magnetic ordering for ZnFe2O4 were constructed to investigate the magnetic and structural properties of this material. The calculated lowest energy structure was found to be different from the conventionally regarded magnetic structure of ZnFe2O4. The Heisenberg model with up to the 4th neighbour interactions was employed to describe the total energies of the seven structures with different magnetic ordering to obtain the interaction energies between the magnetic dipole moments of Fe atoms in the material. In case only up to the 2nd nearest-neighbour interactions was included, the nearest-neighbour (nn) and next nearest-neighbour (nnn) interactions were found to be antiferromagnetic and ferromagnetic respectively with the magnitude of the nn interaction about thrice of that of the nnn interaction. However, much lower consistent results were obtained when the 4th neighbour interactions were included in describing the total energies for these seven structures of different magnetic ordering for ZnFe2O4. Similar conclusions were reached when different constraints were applied in the relaxation processes, i.e. relaxation with constrained cubic geometry, relaxation with allowed shape change for unit cell and relaxation with ionic relaxation applied to O atoms only. The inconsistency in applying the Heisenberg model of up to the 4th neighbour interactions indicates the complexity of magnetic ordering in this material and models beyond the present consideration, e.g. including noncolinearity and different interacting paths, need to be included in the future studies.
【1】 K. Kamazawa, S. Park, S.-H. Lee, T. J. Sato, and Y. Tsunoda1, Dissociation of spin
objects in geometrically frustrated CdFe2O4, Phys. Rev. B70, 024418(2004)
【2】 Y. Yamada, K. Kamazawa, and Y. Tsunoda, Interspin interactions in ZnFe2O4 :
Theoretical analysis of neutron scattering study, Phys. Rev. B66, 064401(2002)
【3】 D. J. Singh, M. Gupta, R. Gupta, Density-functional description of spinel ZnFe2O4,
Phys. Rev. B63, 205102(2001)
【4】 Blundell, Magnetism in Condensed Matter, OXFORD, United States, 2001
【5】Richard M. Martin, Electronic Structure, CAMBRIDGE, United Kingdom, 2004
【6】劉伊郎,陳恭,氧化鐵薄膜(Fe3O4)與超晶格,物理雙月刊(二十二卷六期) 2000,12月