簡易檢索 / 詳目顯示

研究生: 廖仕田
Liao, Shih-Tien
論文名稱: 懸吊式輕鋼架天花板系統耐震工法研究
A Study on Seismic Resistant Suspended Ceiling Systems
指導教授: 姚昭智
Yao, George- C
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 非結構物懸吊式輕鋼架天花板斜撐組收邊元件固定連桿ASTMTAGSC
外文關鍵詞: Nonstructural components, Suspension ceiling systems, Lateral force bracing, Perimeter fixing devices, Strut stabilizer, ASTM, TAGSC
相關次數: 點閱:117下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位處地震頻繁地區,建築結構耐震能力隨著法規之修正,而有顯著提升。但由各震損報告中可知,建築物主結構物尚未破壞時,非結構物損壞案例已頗多。其中,懸吊式輕鋼架天花板為最常遭受震害的非結構物之一。遭受破壞之懸吊式輕鋼架天花板系統,大多受限於耐震工法技術之缺乏及骨架構造強度不足,而未採用任何耐震措施。因此,美國材料試驗協會及內政部建築研究所乃制定相關之規範,提供耐震工法以及骨架構造之基本強度試驗,來提升懸吊式輕鋼架天花板系統之耐震能力。本研究以美國ASTM E580及TAGSC規範中對耐震天花板所規定之作法,以及國內目前常見工法,建立三組試體進行材料特性試驗、振動台試驗以及電腦模擬,來探討各種不同懸吊式輕鋼架天花板系統之耐震能力,所得結果將可供國內之施工方式及修訂規範時的參考。
    歸結本研究所得之重要結論如下:
    1)在振動台試驗中可得,依ASTM規範要求施作之天花板試體在輸入AC156 960gal之震波後,無損壞情形出現,可通過國內耐震法規要求。依TAGSC規範要求施作但骨架接頭拉力強度不足之天花板試體,在輸入AC156 960gal震波後,出現板材掉落情形。依國內目前常見工法所施作之天花板試體,在輸入AC156 600gal震波後,出現骨架接頭鬆脫情形。
    2)在振動台試驗中,收邊元件、斜撐組及固定連桿等措施,能增加懸吊式天花板系統之耐震效能。
    3)在材料特性試驗中,可知骨材接頭強度低於其斷面強度,故骨架破壞由接頭部位控制之。並由材料特性試驗與振動台試驗所得之應變數據進行換算後,可知規範要求骨架接頭強度應達80kgf實屬合理。
    4)由電腦模擬中,進行各組不同面積之模型軸力分析後,可知由地震力所造成之軸力分佈,其中之較大者出現在斜撐組附近與骨架鉸接端。

    the Building structures in Taiwan have been strengthened along with the provision improvement in the building codes. However, the reconnaissance reports after some minor to moderate earthquakes revealed that nonstructural components are easily damaged before the structural failure occurrs. Among all nonstructural components, the suspension ceiling is one of the most often damaged systems, due to the strength of the suspension systems weren’t robust enough and no any aseismic measure has been applied to them. Therefore, in order to increase the aseismic capability of the ceiling suspension system, the American Society for Testing and Materials (ASTM) and the Architecture and Building Research Institute, Taiwan, have issued ASTM E580 and TAGSC, respectively, as the installation standards for the practitioners to follow. In this paper, both the numerical analysis and the experimental studies, including the shake table and the material tests, were performed to investigate the seismic behaviors of the suspension ceiling systems. In the shake table experiments, the excitation inputs were tri-axial and compatible to the AC156 response spectrum, the acceptable criterion for seismic qualification by shake table tests on the nonstructural components. To compare the difference among the systems following the ASTM E580, TAGSC, and the common assembling without considering any aseismic measure, three specimens were tested. The result may be used for further improvement of the provisions in the TAGSC.
    After the research process, the testing and analytical results yielded some main findings as following:
    1.The shake table testing results showed that the ceiling specimen installed following the ASTM E580 could resist the 960gal AC156 excitation without any damage; Some panels of the TAGSC specimen dropped at the 960gal input, due to the strength of the elements (main-tee or cross-tee) in its suspension system didn’t meet the requirement. For the third specimen installed without any aseismic measure, its suspension system detached and severely damaged at the 600gal AC156 excitation.
    2.In the shake table experiments, the perimeter fixing devices, lateral force bracing, and the strut stabilizers for keeping the perimeter components from spreading apart played important roles in enhancing the seismic performance of the ceiling suspension systems.
    3.The material testing results revealed that the section strengths of the main-tee and cross-tee elements were stronger than that of their joint connectors; therefore the joint strengths determined the damage threshold of the ceiling specimens. From the experimental data, it was found the requirement of 80kgf in the ASTM E580 for the joint strength is rational.
    4.From the numerical analysis on the suspension ceiling systems with different ceiling areas, it revealed that the maximum axial forces of the suspension elements occurred at two locations: the first one is the joint where bracing installed, and the other is the edge with perimeter fixing devices.

    表目錄 V 圖目錄 VII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-2-1 電腦模擬部分 2 1-2-2 振動台試驗部分 3 1-2-3 規範部分 3 1-3 研究方法與流程 4 第二章 懸吊式輕鋼架天花板系統工法與規範介紹 7 2-1 國外工法與規範介紹 9 2-2 國內工法與規範介紹 13 2-3 小結 15 第三章 材料特性試驗 17 3-1 拉力試驗 17 3-1-1 試體裝置 17 3-1-2 分析理論與方法 18 3-1-3 試驗分析結果與討論 19 3-2 彎矩試驗 22 3-2-1 試驗規劃 22 3-2-2 分析理論與方法 23 3-2-3 試驗分析結果與討論 30 3-3 小結 33 第四章 懸吊式輕鋼架天花板系統振動台試驗 35 4-1 試體規劃 35 4-1-1 試體裝置 36 4-1-2 試體安裝 36 4-1-3 量測儀器 38 4-2 試驗方法 39 4-3 試驗過程 41 4-3-1 CNBA組 41 4-3-2 CNBT組 46 4-3-3 C組 48 4-4 試驗分析結果與討論 52 4-4-1 各試體組別之自振頻率 52 4-4-2 骨架軸向拉力結果討論 57 4-5 小結 59 第五章 懸吊式輕鋼架天花板系統電腦模擬 61 5-1 CNBT組之電腦模型與特性 62 5-1-1 模擬元件設定 62 5-1-2 元件參數模擬分析流程 64 5-1-3 電腦分析結果 68 5-2 CNBA組之電腦模型與特性 72 5-2-1 模擬元件設定 72 5-2-2 元件參數模擬分析流程 74 5-2-3 電腦分析結果 76 5-3 模擬規範中大面積輕鋼架天花板之試體 79 5-3-1 模擬元件設定 80 5-3-2 元件參數模擬分析流程 81 5-3-3 電腦分析結果 83 5-4 CNBT組之非線性模擬與分析 91 5-4-1 模擬元件設定 91 5-4-2 元件參數模擬分析流程 91 5-4-3 電腦分析結果 93 5-5 小結 94 第六章 結論與建議 95 6-1 結論 95 6-2 建議與後續研究 96 6-2-1 建議 96 6-2-2 後續研究 96 參考文獻 99 附錄一 101 附錄二 109

    1.Lawrence Livermore Laboratory(1980),The LLNL Earthquake Impact Analysis Committee Report on the Livermore, California, Earthquakes of January 24 and 26,1980.UCRL-52956, USA.
    2.Benuska, Lee. (1990) Loma Prieta earthquake reconnaissance report. Earthquake Spectra, Supplement to Vol.6, pp.339-377.
    3.Taniguchi-Ruth-Smith Associates (1993). Guam Memorial Hospital Earthquake Damage Report, Cloria J.Long的私人通訊。
    4.內政部建築研究所(1998),嘉義瑞里地震建築災害調查報告書,台北。
    5.許茂雄等(1999),一九九九集集大地震災害調查研討會論文集,國科會工程科技推廣中心。
    6.ASTM E580(2006) Standard Practice for Application of Ceiling Suspension Systems For Acoustical Tile and Lay-in Panels in Areas Requiring Seismic Restraint. ASTM Int’l, USA.
    7. 內政部建築研究所(2007),懸吊式輕鋼架天花板耐震施工指南,台北。
    8. ASTM C635 (2007). Standard Specification for the Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings. ASTM Int’l, USA.
    9.ASTM C636 (2008). Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels. ASTM Int’l, USA.
    10.倪伯聰(1998),懸吊式輕鋼架天花板之破壞試驗與分析,國立成功大學建築研究所碩士論文。
    11.蘇天傑(2001),懸吊式天花板系統之地震反應數值,國立台灣大學土木工程學研究所碩士論文。
    12.鍾育霖(2001),展示館功能性設施耐震性能評估,國立成功大學建築研究所碩士論文。
    13.Computer and Structure,Inc.(2002),SAP2000 ANALYSIS REFERENCE MANUAL Version 8.0.
    14.ICC Evaluation Service, Inc.(2006). Acceptance Criteria for Seismic Qualification by Shaking-Table Testing of Nonstructural Components and Systems. ICC Evaluation Service, Inc., USA.
    15.內政部營建署(2005),建築物耐震設計規範及解說,台北。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE