| 研究生: |
蔣承諭 Chiang, Cheng-Yu |
|---|---|
| 論文名稱: |
通電對6061鋁合金性質及微結構影響之研究 Effects of Current Stressing on the Properties and Microstructure of 6061 Aluminum Alloy |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 6061鋁合金 、電遷移 、析出物 、差排密度 |
| 外文關鍵詞: | 6061 aluminum alloy, Electromigration, Precipitates, Dislocation density |
| 相關次數: | 點閱:145 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過觀察微結構及機電性質,探討通電對6061鋁合金性質變化的影響與機制。本實驗所使用的6061鋁合金是經過過時效處理之試片,以電流密度6400 A/cm2對其通電3-60分鐘,量測不同通電時間對材料微結構、維氏硬度及電阻率的變化,並結合微結構的變化和機、電性質,分析影響材料性質的機制。X光繞射分析顯示電流使材料內部產生應變,但並沒有發生相轉換。掃描式電子顯微鏡分析顯示通電前後析出物數量及尺寸的變化;穿透式電子顯微鏡觀察材料結晶面發現鋁基地相(111)面及(200)面差排密度隨通電時間不同有所增減。藉由電子背向散射繞射分析顯示材料在通電後,(101)為擇優取向;晶界取向差角的分析顯示,高低角度晶界比例變化不明顯,顯示再結晶及凝核等現象不明顯;晶粒尺寸亦無明顯變化。通電後微硬度變化受到差排密度變化影響,差排密度的變化推測是析出物造成的結果,電阻率也同樣與差排密度變化關聯性較大。
This study investigated the variation of mechanical and electrical properties and microstructure of 6061 aluminum alloy after current stressing. The over-aged specimens were subjected to direct current stressing at 6400 A/cm2 for 3-60 minutes. After current stressing, the specimen was quenched with liquid nitrogen immediately to eliminate the residual joule heat on microstructure. The variation in microstructure, Vickers hardness and electrical resistivity were investigated with respect to current stressing time. The results of XRD investigation showed that strain was generated but no obvious phase transformation occurred. SEM images indicated that precipitates were found in the matrix. The results of TEM investigation showed that the lattice orientation and the dislocation densities in the matrix changed. EBSD results indicated that the preferred orientation was (101). The misorientation angle did not change a lot, grain size of matrix also changed little, indicating no obvious grain growth and recrystallization. The variation of microhardness and electrical resistivity was greatly related to the variation of dislocation density of (111).
[1] W. M. Haynes, CRC Handbook of Chemistry and Physics, 97th ed. CRC Press, 2016, pp. 14-17.
[2] J. Zhang, Z. Fan, Y. Q. Wang, and B. L. Zhou, "Equilibrium pseudobinary Al-Mg2Si phase diagram," Materials Science and Technology, Article vol. 17, no. 5, pp. 494-496, 2001.
[3] SONG Dong-fu, WANG Shun-cheng, ZHOU Nan, NONG Deng, and ZHENG Kai-hong, "Progress in Research on Iron-rich Phase Morphology in Al-Si Alloy and Its Influencing Factors," Journal of Materials Engineering, vol. 44, no. 5, pp. 120-128, 2016.
[4] H. Liu, G. Zhao, C. M. Liu, and L. C. Zuo, "Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys," Transactions of Nonferrous Metals Society of China, Article vol. 16, no. 2, pp. 376-381, 2006.
[5] A. K. Gupta, P. H. Marois, and D. J. Lloyd, "Study of the precipitation kinetics in a 6000 series automotive sheet material," in Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1-3, vol. 217, J. H. Driver et al. Eds., (Materials Science Forum. Zurich-Uetikon: Transtec Publications Ltd, 1996, pp. 801-808.
[6] C. M. Dinnis, J. A. Taylor, and A. K. Dahle, "As-cast morphology of iron-intermetallics in Al-Si foundry alloys," Scripta Materialia, Article vol. 53, no. 8, pp. 955-958, 2005.
[7] Z. Ma, A. M. Samuel, H. W. Doty, S. Valtierra, and F. H. Samuel, "Effect of Fe content on the fracture behaviour of Al-Si-Cu cast alloys," Materials & Design, Article vol. 57, pp. 366-373, 2014.
[8] A. Eshaghi, H. M. Ghasemi, and J. Rassizadehghani, "Effect of heat treatment on microstructure and wear behavior of Al-Si alloys with various iron contents," Materials & Design, Article vol. 32, no. 3, pp. 1520-1525, 2011.
[9] K. Matsuda, S. Taniguchi, K. Kido, and S. Ikeno, "Effect of addition of copper and chromium on precipitation in Al-Mg-Si alloys," in Aluminum Alloys 2002: Their Physical and Mechanical Properties Pts 1-3, vol. 396-4, P. J. Gregson and S. J. Harris Eds., (Materials Science Forum. Zurich-Uetikon: Trans Tech Publications Ltd, 2002, pp. 941-945.
[10] L. Lodgaard and N. Ryum, "Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Article vol. 283, no. 1-2, pp. 144-152, 2000.
[11] 正橋直哉, "ものづくり基礎講座 金属の魅力をみなおそう 第四回 アルミニウム," 技術セミナー, 2012, vol. 第53回.
[12] G. E. Dieter, Mechanical metallurgy. New York: McGraw-Hill, 1961, pp. 144,158-189.
[13] Donald R. Askeland, The science and engineering of materials, 2nd ed. Boston: PWS-Kent Pub. Co., 1989, pp. 321-323.
[14] P. S. Ho and T. Kwok, "Electromigration in metals," Reports on Progress in Physics, vol. 52, no. 3, pp. 301-348, 1989.
[15] J. R. Black, Physics of Electromigration. Las Vegas, NV, USA: IEEE, 1974, pp. 142-149.
[16] 木村 康裕, 坂 真澄, "配線の低電気抵抗率化と高信頼化," エレクトロニクス実装学術講演大会講演論文集 vol. 27, pp. 284-285, 2013.
[17] R. P. Gupta, "The electron wind force in electromigration," Journal of Physics and Chemistry of Solids, Article vol. 47, no. 11, pp. 1057-1066, 1986.
[18] A. Scorzoni, B. Neri, C. Caprile, and F. Fantini, "Electromigration in thin-film interconnection lines models, methods and results," Materials Science Reports, vol. 7, no. 4-5, pp. 143-220, 1991.
[19] C. M. Chen and S. W. Chen, "Electric current effects on Sn/Ag interfacial reactions," Journal of Electronic Materials, Article vol. 28, no. 7, pp. 902-906, 1999.
[20] A. Laik, K. Bhanumurthy, and G. B. Kale, "Correlation factors in beta-Zr(Al) phase," Journal of Alloys and Compounds, Article vol. 372, no. 1-2, pp. 176-179, 2004.
[21] Arthur S. Nowick, Diffusion in solids: recent developments. New York: Academic Press, 1975, p. 329.
[22] Chen H. Y., Ku M. F., and Chen C., "Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints," Advances in Materials Research, vol. 1, no. 1, pp. 83-92, 2012.
[23] C. N. Liao, K. C. Chen, W. W. Wu, and L. J. Chen, "In situ transmission electron microscope observations of electromigration in copper lines at room temperature," Applied Physics Letters, Article vol. 87, no. 14, p. 3, 2005, Art no. 141903.
[24] J. Z. Wang, D. X. Mao, G. Z. Meng, L. Shi, H. T. Chen, R. H. Xia, and M. N. Li, "Electromigration Mechanism of Indium-44Tin-6Zinc Alloy," Journal of Electronic Materials Article vol. 48, no. 10, pp. 6849-6856, 2019.
[25] H. Xiao, S. S. Jiang, C. C. Shi, K. F. Zhang, Z. Lu, and J. F. Jiang, "Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Article vol. 756, pp. 442-454, 2019.
[26] O. N. Senkov, "Particle size distributions during diffusion controlled growth and coarsening," Scripta Materialia, Article vol. 59, no. 2, pp. 171-174, 2008.
[27] H. Conrad, "Effects of electric current on solid state phase transformations in metals," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Article; Proceedings Paper vol. 287, no. 2, pp. 227-237, 2000.
[28] S. M. Rajaa, H. A. Abdulhadi, K. S. Jabur, and G. R. Mohammed, "Aging Time Effects on the Mechanical Properties of Al 6061-T6 Alloy," Engineering Technology & Applied Science Research, vol. 8, no. 4, pp. 3113-3115, 2018.
[29] A. Handbook, Heat Treating of Aluminum Alloys. ASM Handbook Committee, 1991, pp. 841-879.
[30] B. D. Cullity, Elements of X-ray diffraction, 1st ed. (Addison-Wesley metallurgy series). Addison-Wesley Pub. Co., 1956, pp. 84-85.
[31] B. D. Cullity, Elements of X-ray diffraction, 3rd ed. (Addison-Wesley metallurgy series). Addison-Wesley Pub. Co., 2001, pp. 439-441.
[32] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 9nd ed. John Wiley & Sons, Inc., 2011, pp. 231-237.
[33] F. M. Smits, "Measurement of sheet resistivities with the 4-point probe," Bell System Technical Journal, Article vol. 37, no. 3, pp. 711-718, 1958.
[34] 小菅張弓, "Al-Fe 系合金における金属間化合物," 軽金属, vol. 30, no. 4, pp. 217-226, 1980.
[35] H. G. Chen and C. Li, "Electron Backscatter Diffraction Technique in SEM," Instruments Today, vol. 27, no. 6, pp. 22-30, 2006.
[36] Joseph Goldstein, Dale E. Newbury, David joy, Patrick Echlin, Eric Lifshin, Linda Sawyer, Charles E. Lyman, and Joseph R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3 ed. Springer, 2003.
[37] A. Kelly and R. Nicholson, Strengthening methods in crystals. New York: Elsevier Pub. Co., 1971, pp. 12-76.
[38] Y. S. Zheng, G. Y. Tang, J. Kuang, and X. P. Zheng, "Effect of electropulse on solid solution treatment of 6061 aluminum alloy," Journal of Alloys and Compounds, vol. 615, pp. 849-853, 2014.
[39] J. W. Park, H. J. Jeong, S. W. Jin, M. J. Kim, K. Lee, J. J. Kim, S. T. Hong, and H. N. Han, "Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy," Materials Characterization, vol. 133, pp. 70-76, 2017.
[40] D. C. Giancoli, Physics, 4th ed. Prentice Hall, 1995, pp. 509-510.
[41] R. A. Serway, Principles of Physics, 2nd ed. Saunders College Pub, 1998, p. 602.
[42] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys. ASM International, 1993, p. 784.
[43] L. I. Belic, K. Pozun, and M. Remskar, "AES, AFM and TEM studies of NiCr thin films for capacitive humidity sensors," Thin Solid Films, Article; Proceedings Paper vol. 317, no. 1-2, pp. 173-177, 1998.
[44] J. M. Zhang and K. W. Xu, "Theoretical analysis of strain energy-driven abnormal grain growth in metallic films with hcp ((c/a)< 1.633) structure on rigid substrates," Applied Surface Science, vol. 218, no. 1-4, pp. 245-249, 2003.
[45] C. E. Ho, C. W. Liao, H. H. Hua, and H. J. Chen, "EBSD Analysis on the Microstructures of Electrolytic Cu Deposition in the Through Hole (TH) Filling Process," Mining and Metallurgy, vol. 57, no. 2, pp. 125-130, 2013.
[46] F. J. Humphreys, Recrystallization and Related Annealing Phenomena, 2 ed. Amsterdam, Boston: Elsevier, 2004, pp. 121-167.
[47] A. Yamashita, D. Yamaguchi, Z. Horita, and T. G. Langdon, "Influence of pressing temperature on microstructural development in equal-channel angular pressing," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 287, no. 1, pp. 100-106, 2000.
[48] Y. H. Liao, C. L. Liang, K. L. Lin, and A. T. Wu, "High dislocation density of tin induced by electric current," Aip Advances, vol. 5, no. 12, Dec 2015, Art no. 127210.
[49] C. R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys. American Society for Metals, 1982, pp. 15-18.
[50] E. Ganin, Y. Komem, and A. Rosen, "Shock induced hardness in α-Iron," Materials Science and Engineering, vol. 33, no. 1, pp. 1-4, 1978.
[51] J. C. Tang, B. Y. Huang, Y. H. He, W. S. Liu, and K. C. Zhou, "Factors affecting the Hall-Petch relationship in Ti-Al based alloys," Acta Metallurgica Sinica, vol. 38, no. 4, pp. 365-368, 2002.
[52] A. Bergmann, M. Kaveh, and N. Wiser, "Electron-dislocation scattering and negative deviations from matthiessens-rule," Solid State Communications, vol. 34, no. 5, pp. 369-373, 1980.
[53] L. Z. He, W. H. Fei, M. X. Wei, Q. B. Ning, X. Y. Wang, and J. Z. Cui, "Microstructures and properties of 6061 alloy homogenized with electric current," Materials Research Express, vol. 6, no. 8, 2019, Art no. 086525.
[54] J. Vancea, G. Reiss, and H. Hoffmann, "Mean-free-path concept in polycrystalline metals," Physical Review B, vol. 35, no. 12, pp. 6435-6437, Apr 1987.
[55] R. A. Brown, "Electrical-resistivity Of Dislocations In Metals," Journal of Physics F-Metal Physics, vol. 7, no. 7, pp. 1283-1295, 1977.
[56] V. Rauta, C. Cingi, and J. Orkas, "Effect of Annealing and Metallurgical Treatments on Thermal Conductivity of Aluminium Alloys," International Journal of Metalcasting, vol. 10, no. 2, pp. 157-171, 2016.
[57] A. F. Mayadas, M. Shatzkes, and J. F. Janak, "Electrical-Resistivity Model for Polycrystalline Films: The Case of Specular Reflection at External Surfaces," Applied Physics Letters, vol. 14, no. 11, pp. 345-347, 1969.
校內:2026-07-31公開