| 研究生: |
鄧劭剛 Deng, Shao-Gang |
|---|---|
| 論文名稱: |
CDMA系統最佳化功率與允入控制研究 Optimal Power and Admitting Control in CDMA Systems |
| 指導教授: |
郭文光
Kuo, Wen-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | CDMA 、功率消耗 、允入控制 |
| 外文關鍵詞: | CDMA, power, admitting control |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這些年,CDMA網路一直是3G網路裡的主流,在手機的功能日益強大下,QoS和功率的研究也越來越重要。本篇論文探討在一個CDMA網路裡的允入控制和功率消耗的最佳化,在符合每個使用者的QoS要求,以及其他有關連結限制和基地台功率上限的限制等等下,如何使可被服務的使用者最大化,同時,現在全球能源短缺,節能的觀念越來越重視的情況下,功率的消耗也是我們考慮的重點。
Recent years, the CDMA cellular network has been major network in 3G. And because the functions of cell phone become more and more powerful, the study of admitting control and energy consumption is more important as well. This paper focus on optimization between admitting control and energy consumption. Under request of users, consider link limited and power limited as well, we try to maximize admitted users. Also, due to the issue of environment, saving energy is another objective to us.
[1]Bard, J. F. Coordination of a Multidivisional Organization Through Two Levels of Management. OMEGA 11, 457-468. (1983).
[2]Bard, J. F., and J. E. Falk. Explicit Solution to the Multi-Level Programming Problem. Comput. Opns. Res. 9, 77-100. (1982).
[3]Basar, T., and H. Selbuz. Closed Loop Stackelberg Strategies With Applications in Optimal Control of Multilevel Systems. IEEE Trans. Auto. Control AC-24, 166-178. (1979).
[4]Bialas, W. F., and M. H. Karwan. Two-Level Linear Programming. Mgmt. Sci. 30, 1004-1020. (1984).
[5]Burton, R. M., and B. Obel. The Multilevel Approach to Organizational Issues of the Firm: A Critical Review. OMEGA 5, 395-444. (1977).
[6]Chankong, V., and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodology. North-Holland, New York. (1983).
[7]Fortuny-Amat, J., and B. Mcarl. (1981). A Representation and Economic Interpretation of a Two-Level Programming Problem. J. Opnl. Res. Soc. 32, 783-792. (1981).
[8]Geoffrion, A. M. Primal Resource-Directive Approaches for Optimizing Nonlinear Decomposable Systems. Opns. Res. 18, 375-403. (1970).
[9]Geoffrion, A. M., and W. W. Hogan. Coordination of Two-Level Organizations With Multiple Objectives. In Techniques of Optimization, A. V. Balakrishnan (ed.). Academic Press, New York. (1972).
[10]Hogan, W. W. Point-To-Set Maps in Mathematical Programming. SIAM Rev, 15, 591-603. (1973).
[11]Leblanc, L. J., and D. E. Boyce. A Bilevel Programming Algorithm for Exact Solution of the Network Design Problem With User-Optimal Flows. Trans. Res. 20B, 259-265. (1985).
[12]Moore, J. T. Extensions to the Multilevel Linear Programming Problem. Ph.D. Dissertation, Department of Mechanical Engineering, University of Texas, Austin. (1988).
[13]Moore, J. T., and J. F. Bard. An Algorithm for the Zero-One Bilevel Programming Problem. Department of Mechanical Engineering, University of Texas, Austin. (1987).
[14]Rouhani, R., L. Lasdon, W. Lebow and A. D. Warren. A Generalized Benders Decomposition Approach to Reactive Source Planning in Power Systems. Math. Prog. Study 25, 62-75. (1985).
[15]Simaan, M., and J. B. Cruz, JR. On the Stackelberg Strategy in Nonzero-Sum Games. J. Optim. Theory Appl. 11, 533-555. (1973).
[16]Tolwinski, B. Closed-Loop Stackelberg Solution to a Multistage Linear-Quadratic Game. J. Optim. Theory Appl. 34, 485-501. (1981).
[17]E. Aiyoshi and K. Shimizu. Hierarchical Decentralized Systems and its New Solution by a Barrier method. IEEE Trans. Systems, Man, Cybernetics, 11, 444-449. (1981).
[18]W. Candler and R. Townsley. A Linear Two-Level Programming Problem. Comput. Oper. Res., 9, 59-76. (1982).
校內:2018-08-07公開