簡易檢索 / 詳目顯示

研究生: 鄧劭剛
Deng, Shao-Gang
論文名稱: CDMA系統最佳化功率與允入控制研究
Optimal Power and Admitting Control in CDMA Systems
指導教授: 郭文光
Kuo, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 38
中文關鍵詞: CDMA功率消耗允入控制
外文關鍵詞: CDMA, power, admitting control
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這些年,CDMA網路一直是3G網路裡的主流,在手機的功能日益強大下,QoS和功率的研究也越來越重要。本篇論文探討在一個CDMA網路裡的允入控制和功率消耗的最佳化,在符合每個使用者的QoS要求,以及其他有關連結限制和基地台功率上限的限制等等下,如何使可被服務的使用者最大化,同時,現在全球能源短缺,節能的觀念越來越重視的情況下,功率的消耗也是我們考慮的重點。

    Recent years, the CDMA cellular network has been major network in 3G. And because the functions of cell phone become more and more powerful, the study of admitting control and energy consumption is more important as well. This paper focus on optimization between admitting control and energy consumption. Under request of users, consider link limited and power limited as well, we try to maximize admitted users. Also, due to the issue of environment, saving energy is another objective to us.

    目錄 第一章 簡介 -------------------------------------------9 第二章 網路架構與模型 ----------------------------------11 2.1 WCDMA網路系統 ----------------------------------11 2.2 網路架構與符號表示 --------------------------11 2.3 上層限制條件 --------------------------14 2.3.1 連結線制式 2.3.2 距離限制式 2.3.3 移動終端設備與基地台限制式 2.4 下層限制條件 --------------------------15 2.4.1 功率非負限制式 2.4.2 功率限制式 2.4.3 基地台功率限制式 2.4.4 Qos限制式 2.5 決策目標 ----------------------------------16 2.5.1 上層目標 2.5.2 下層目標 2.6 二層混整數線性規劃模型 ------------------17 第三章 求解程序 ------------------------------------------18 3.1 二層混整數線性規劃的標準數學型式 ----------18 3.2 二層線性規劃的全域最佳解 ------------------19 3.3 對於二層混整數線性規劃的演算法 ----------20 3.3.1 演算法流程圖 3.3.2 演算法步驟 3.3.3 演算法概念 3.3.4 演算法流程講解 第四章 模擬數據 ------------------------------------------33 第五章 結論 ------------------------------------------36 參考文獻 --------------------------------------------------37

    [1]Bard, J. F. Coordination of a Multidivisional Organization Through Two Levels of Management. OMEGA 11, 457-468. (1983).
    [2]Bard, J. F., and J. E. Falk. Explicit Solution to the Multi-Level Programming Problem. Comput. Opns. Res. 9, 77-100. (1982).
    [3]Basar, T., and H. Selbuz. Closed Loop Stackelberg Strategies With Applications in Optimal Control of Multilevel Systems. IEEE Trans. Auto. Control AC-24, 166-178. (1979).
    [4]Bialas, W. F., and M. H. Karwan. Two-Level Linear Programming. Mgmt. Sci. 30, 1004-1020. (1984).
    [5]Burton, R. M., and B. Obel. The Multilevel Approach to Organizational Issues of the Firm: A Critical Review. OMEGA 5, 395-444. (1977).
    [6]Chankong, V., and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodology. North-Holland, New York. (1983).
    [7]Fortuny-Amat, J., and B. Mcarl. (1981). A Representation and Economic Interpretation of a Two-Level Programming Problem. J. Opnl. Res. Soc. 32, 783-792. (1981).
    [8]Geoffrion, A. M. Primal Resource-Directive Approaches for Optimizing Nonlinear Decomposable Systems. Opns. Res. 18, 375-403. (1970).
    [9]Geoffrion, A. M., and W. W. Hogan. Coordination of Two-Level Organizations With Multiple Objectives. In Techniques of Optimization, A. V. Balakrishnan (ed.). Academic Press, New York. (1972).
    [10]Hogan, W. W. Point-To-Set Maps in Mathematical Programming. SIAM Rev, 15, 591-603. (1973).
    [11]Leblanc, L. J., and D. E. Boyce. A Bilevel Programming Algorithm for Exact Solution of the Network Design Problem With User-Optimal Flows. Trans. Res. 20B, 259-265. (1985).
    [12]Moore, J. T. Extensions to the Multilevel Linear Programming Problem. Ph.D. Dissertation, Department of Mechanical Engineering, University of Texas, Austin. (1988).
    [13]Moore, J. T., and J. F. Bard. An Algorithm for the Zero-One Bilevel Programming Problem. Department of Mechanical Engineering, University of Texas, Austin. (1987).
    [14]Rouhani, R., L. Lasdon, W. Lebow and A. D. Warren. A Generalized Benders Decomposition Approach to Reactive Source Planning in Power Systems. Math. Prog. Study 25, 62-75. (1985).
    [15]Simaan, M., and J. B. Cruz, JR. On the Stackelberg Strategy in Nonzero-Sum Games. J. Optim. Theory Appl. 11, 533-555. (1973).
    [16]Tolwinski, B. Closed-Loop Stackelberg Solution to a Multistage Linear-Quadratic Game. J. Optim. Theory Appl. 34, 485-501. (1981).
    [17]E. Aiyoshi and K. Shimizu. Hierarchical Decentralized Systems and its New Solution by a Barrier method. IEEE Trans. Systems, Man, Cybernetics, 11, 444-449. (1981).
    [18]W. Candler and R. Townsley. A Linear Two-Level Programming Problem. Comput. Oper. Res., 9, 59-76. (1982).

    無法下載圖示 校內:2018-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE