簡易檢索 / 詳目顯示

研究生: 郭奇昕
Kuo, Chi-Shin
論文名稱: 毫米波CMOS高隔離度射頻收發開關及功率放大器之研製
Design of Millimeter-Wave CMOS High-Isolation T/R Switches and Power Amplifiers
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 79
中文關鍵詞: 毫米波收發開關功率放大器
外文關鍵詞: Millimeter-Wave, T/R Switches, Power Amplifiers
相關次數: 點閱:102下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計研製60-GHz CMOS高隔離度射頻收發開關及整合帶通濾波器之收發開關、K-band及使用威爾金森功率結合器之V-band CMOS功率放大器。高隔離度射頻收發開關採用TSMC CMOS 90-nm製程,主要以洩漏訊號消除技術來實現完成;並進一步設計整合60-GHz CMOS帶通濾波器之射頻收發開關。K-band CMOS功率放大器採用TSMC CMOS 0.18-μm製程,以疊接組態來實現高增益與高效率之特性;使用威爾金森功率結合器之V-band CMOS功率放大器採用TSMC CMOS 90-nm製程,來結合並聯功率放大器輸出之能量,達到增加輸出功率及線性度之特點。電路設計部份使用Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer方式進行。根據所預計量測的特性參數不同,相關的量測方法與設置亦有所調整。

    This thesis presents the design of millimeter-wave CMOS high-isolation T/R switches and power amplifiers. The designed RFICs are fabricated using standard TSMC 90-nm or 0.18-μm CMOS technologies. The Agilent ADS and Ansoft three-dimensional (3D) EM simulator HFSS are used for design simulation. The 60-GHz CMOS high-isolation T/R switch is realized using the leakage cancellation technique. The 60-GHz CMOS on-chip integrated switch-filter is composed of a high-isolation T/R switch and a low-insertion- loss bandpass filter. In the design of the K-band CMOS power amplifier, the cascode structure is used to achieve the high gain and linearity. The V-band CMOS power amplifier uses the Wilkinson power combiner to achieve a high output power. The performance of the designed RFICs are achieved by the using the on-wafer measurement.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 1 第二章 60-GHz CMOS高隔離度之射頻收發開關 3 2.1 收發開關簡介 3 2.1.1 操作原理及重要參數介紹 3 2.1.2 電晶體開關模型 5 2.2 常見之射頻收發開關電路架構 8 2.2.1 串聯式(series type)與串–並式(series-shunt type)收發開關 8 2.2.2 疊接電晶體式(stacked transistors)收發開關 9 2.2.3 行進波 (traveling-wave) 概念之收發開關 9 2.2.4 並聯電感諧振式(shunt inductor resonance)收發開關 10 2.2.5 洩漏訊號消除(leakage cancellation)技術之收發開關 11 2.2.6 基極浮接(body-floating)技術 11 2.3 60-GHz CMOS高隔離度之射頻收發開關 14 2.3.1 電路架構簡介 14 2.3.2 電晶體尺寸選擇 16 2.3.3 完整電路設計流程與考量 17 2.4 改良型高隔離度之60-GHz CMOS射頻收發開關 23 2.4.1 改良型收發開關電路架構簡介 23 2.4.2 完整電路設計流程與考量 24 2.4.3 模擬與量測結果 26 2.5 結果與討論 30 2.5.1 60-GHz CMOS高隔離度射頻收發開關結果與討論 30 2.5.2 改良型高隔離度之60-GHz CMOS射頻收發開關結果與討論 31 第三章 60–GHz CMOS射頻收發開關及帶通濾波器之整合毫米波晶片 35 3.1 電路架構簡介 35 3.1.1 完整電路設計與考量 36 3.2 模擬與量測結果 37 3.3 結果與討論 42 第四章 K- 及V-band CMOS功率放大器 45 4.1 功率放大器簡介 45 4.1.1 架構種類與重要參數 46 4.1.2 匹配考量 47 4.1.3 穩定度考量 49 4.2 常見之功率結合機制 49 4.2.1 威爾金森功率分波/結合器(Wilkinson power divider/combiner) 50 4.2.2 分佈式主動變壓器(distributed active transformer) 52 4.3 K-band CMOS功率放大器 56 4.3.1 完整電路設計流程與考量 57 4.3.2 模擬與量測結果 58 4.4 使用威爾金森結合器之V-band CMOS功率放大器 62 4.4.1 完整電路設計流程與考量 62 4.4.2 模擬與量測結果 64 4.5 結果與討論 68 4.5.1 K-band CMOS功率放大器結果與討論 68 4.5.2 使用威爾金森結合器之V-band CMOS功率放大器結果與討論 71 第五章 結論 73 參考文獻 75 附錄A 功率放大器種類簡介[27][28] 79 附錄B T型網路相移電路推導[14][17] 89

    [1]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
    [2]RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
    [3]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
    [4]N. Talwalklar, C. P. Yue, and S. S. Wong, “An integrated 5.2 GHz CMOS T/R switch with LC-tuned substrate bias,” ISSCC Dig. Tech. Papers, pp. 362–499, vol. 1, Feb. 2003.
    [5]M. C. Yeh, Z. M. Tsai, R. C. Liu, K. Y. Lin, Y. T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 31–39, Jan. 2006.
    [6]K. Numata, Y. Takahashi, T. Maeda, and H. Hida, “A high-power-handling GSM switch IC with new adaptive-control-voltage-generator circuit scheme,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Philadelphia, PA, June 2003, pp. 233–236.
    [7]T. Ohnakado, S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with Depletion-Layer-Extended transistors (DETs),” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 577–584, Apr. 2004.
    [8]H. Xu, and K. K. O, “A 31.3-dBm bulk CMOS T/R switch using stacked transistors with Sub-design-rule channel length in floated p-well,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2528–2534, Nov. 2007.
    [9]Y. Ayasli, R. L. Mozzi, J. L. Vorhaus, L. D. Reynolds, and R. A. Pucel, “A monolithic GaAs 1-13-GHz traveling-wave amplifier,” IEEE Trans. Microw. Theory Tech., vol. 30, no. 7, pp. 976–981, July 1982.
    [10]H. Mizutani, and Y. Takayama, “DC-110-GHz MMIC traveling-wave switch,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 5, pp. 840–845, May 2000.
    [11]S. F. Chao, H. Wang, C. Y. Su, and J. G. J. Chern, “A 50 to 94-GHz CMOS SPDT switch using traveling-wave concept,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 130–132, Feb. 2007.
    [12]B. W. Min, and G. M. Rebeiz, “Ka-band low-loss and high-isolation 0.13 μm CMOS SPST/SPDT switches using high substrate resistance,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Honolulu, HI, June. 2007, pp. 569–572.
    [13]C. Y. Ou, C. Y. Hsu, H. R. Lin, and H. R. Chuang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,” in Proc. IEEE European Microw. Integrated Circuits Conf., Sept. 2009, pp. 250–253.
    [14]S. C. Chang, S. F. Chang, T. Y. Chih, and J. A. Tao, “An internally-matched high-isolation CMOS SPDT switch using leakage cancellation technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 525–527, July 2007.
    [15]F. J. Huang, and K. K. O, “A 0.5-μm CMOS T/R switch for 900-MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.
    [16]M. C. Yeh, Z. M. Tsai, R. C. Liu, K. Y. Lin, Y. T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 31–39, Jan. 2006.
    [17]T. M. Hancock, and G. M. Rebeiz, “A 12-GHz SiGe phase shifter with integrated LNA,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 977–983, Mar. 2005.
    [18]C. M. Ta, E. Skafidas, and R. J. Evans, “A 60-GHz CMOS transmit/receive switch,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Honolulu, HI, June. 2007, pp. 725–728.
    [19]Y. A. Atesal, B. Centinoneri, and G. M. Rebeiz, “Low-loss 0.13-μm CMOS 50–70 GHz SPDT and SP4T switches,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Boston, MA, June. 2009, pp. 43–46.
    [20]M. Uzunkol, and G. M. Rebeiz, “A low-loss 50–70 GHz SPDT switch in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2003–2007, Oct. 2010.
    [21]C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 60-GHz Millimeter-Wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246–248, Mar. 2008.
    [22]C. C. Lin, C. Z. Huang, and C. Y. Chen, “Compact and highly selective Millimeter-Wave meandered bandpass filter using 0.18-μm CMOS technology,” in Proc. IEEE Asia Pacific Microw. Conf., Dec. 2011.
    [23]I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
    [24]I. Aoki, S. Kee, R. Magoon, R. Aparicio, F. Bohn, J. Zachan, G. Hatcher, D. McClymont, and A. Hajimiri, “A fully-integrated quad-band GSM/GPRS CMOS power amplifier,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2747–2758, Dec. 2008.
    [25]P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054–1063, May 2008.
    [26]A. M. Niknejad, and H. Hashemi, “Mm-wave silicon technology-60 GHz and beyond,” Springer, 2008.
    [27]Steve C. Cripps, “RF power amplifiers for wireless communications,” 2nd ed. Artech House, Inc. ,2006.
    [28]張盛富,張嘉展,“無線通訊射頻晶片模組設計-射頻晶片篇,” 全華科技,2008。
    [29]D. M. Pozar, “Microwave engineering,” 3rd ed. John Wiley and Sons, Inc. ,2005.
    [30]張盛富,張嘉展,“無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技,2008。
    [31]廖哲宏,應用於IEEE 802.11a WLAN之5.7 GHz CMOS 射頻接收機及功率放大器RFICs,成功大學電腦與通信工程研究所碩士論文,民國92年。
    [32]C. Y. Law, and A.-V. Pham, “A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS,” ISSCC Dig. Tech. Papers, pp. 426–427, 7-11 Feb. 2010.
    [33]林育聖,60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,成功大學電腦與通信工程研究所碩士論文,民國98年。
    [34]J. R. Long, “Monolithic transformer for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
    [35]葉景富,24-GHz CMOS射頻前端晶片及毫米波電路之研究設計,成功大學電腦與通信工程研究所碩士論文,民國98年。
    [36]J.-W. Lai, and A. Valdes-Garcia, “A 1V 17.9dBm 60GHz power amplifier in standard 65nm CMOS,” ISSCC Dig. Tech. Papers, pp.424-425, 7-11 Feb. 2010.
    [37]J. Chen, and A. M. Niknejad, “A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 432–433, 7-11 Feb. 2011.
    [38]C. C. Hung, J. L. Kuo, K. Y. Lin, and H. Wang, “A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-μm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Anaheim, CA, June. 2010, pp. 557–560.
    [39]P. C. Huang, J. L. Kuo, Z. M. Tsai, K. Y. Lin, and H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE Int. Microwave Symp. , Anaheim, CA, June. 2010, pp. 248–251.
    [40]Y. Kawano, A. Mineyama, T. Suzuki, M. Sato, T. Hirose, and K. Joshin, “A fully-integrated K-band CMOS power amplifier with Psat of 23.8 dBm and PAE of 25.1 %,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Baltimore, MD, June. 2011.
    [41]N. C. Kuo, J. C. Kao, C. C. Kuo, and H. Wang, “K-band CMOS power amplifier with adaptive bias for enhancement in back-off frequency,” in IEEE Int. Microwave Symp., Baltimore, MD, June. 2011.
    [42]B. Martineau, V. Knopik, A. Siligaris, F. Gianesello, and D. Belot, “A 53-to-68GHz 18dBm power amplifier with an 8-way combiner in standard 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 428–429, 7-11 Feb. 2010.
    [43]J. Y. C. Liu, A. Tang, N. Y. Wang, Q. J. Gu, R. Berenguer, H. H. Hsieh, P. Y. Wu, C. Jou, and M. C. F. Chang, “A V-band self-healing power amplifier with adaptive feedback bias control in 65nm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Baltimore, MD, June. 2011.
    [44]T. Wang, T. Mitomo, N. Ono, and O. Watanabe, “A 55-67GHz power amplifier with 13.6% PAE in 65nm standard CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Baltimore, MD, June. 2011.
    [45]N. O. Sokal, and A. D. Sokal, “Class E–A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. sc-10, no. 3, pp. 168–176, Jun. 1975.
    [46]郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,成功大學電腦與通信工程研究所碩士論文,民國97年。
    [47]蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,成功大學電腦與通信工程研究所碩士論文,民國99年。
    [48]楊楚昀,K-band CMOS低雜訊、功率放大器及60-GHz毫米波可調變增益放大器之研製,成功大學電腦與通信工程研究所碩士論文,民國99年。

    下載圖示 校內:2017-02-13公開
    校外:2017-02-13公開
    QR CODE