| 研究生: |
陳彥融 Chen, Yen-Ron |
|---|---|
| 論文名稱: |
7075鋁合金共振破壞之軋延方向性及
人工時效效應探討 Effect of Sampling Direction and Artificial Aging on the Fracture Characteristics of 7075 Aluminum Alloy under Resonant Vibration |
| 指導教授: |
陳立輝
Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 共振破壞 、7075鋁合金 |
| 外文關鍵詞: | 7075 Aluminum Alloy, Fracture of Resonant Vibration |
| 相關次數: | 點閱:114 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以7075鋁合金為實驗材料,探討不同方位取向、人工時效及預應變處理對共振破壞行為及裂縫傳播特徵的影響。
實驗結果顯示,不同方位取向的試片具裂縫傳播速率的差異。軋延方向試片其裂縫傳播速率最慢,導致其共振壽命較其它兩取向試片為佳。此外,三取向試片之主裂縫均以穿晶傳播為主。
在人工時效方面之共振測試結果顯示,在固定振動台出力值條件下,其起始偏移量由高至低依序為峰值時效、固溶化、初時效以及過時效,恰與共振壽命長短順序相反。亦即,等出力條件下試片之振動破壞阻抗與制振性成正比。而在固定試片末端起始偏移量條件下,共振壽命則隨著降伏強度增加而增加。另外,在裂縫傳播特徵方面,固溶化試片其主裂縫主要以穿晶、局部沿滑移帶傳播的方式成長;初時效、峰值時效及過時效試片並無觀察到滑移帶生成,其主裂縫傳播均以穿晶為主。固溶化及初時效試片其主裂縫遇到晶界不會改變傳播方向,但峰值時效及過時效試片,可觀察到主裂縫有遇到晶界而改變其傳播方向的情形。
另外,本研究亦發現,經展伸及峰值時效之7075合金(T651),於固定振動台出力值下,其制振性及共振壽命均較上述各時效條件試片差,此結果顯示7075-T651鋁合金不適合應用於振動環境。
This study aims to explore the effects of sampling direction, artificial aging and stretch treatment on the resonant vibration properties of the commercial 7075 alloy. The influence of crack propagation characteristics on the vibration life was also investigated.
Experimental results indicate that different sampling direction caused the difference in crack propagation rate. The RD (rolling direction) samples which show the lowest crack growth rate exhibit the greatest vibration life. The crack propagation path of the specimens is almost transgranular regardless of the sampling direction.
The results also show that under constant force conditions the initial deflection in a decreasing order and the vibration life in an increasing order are the peak-aged (PA), solution-treated (ST), under-aged (UA) and over-aged (OA) specimens. That is, the specimen with a greater damping capacity possesses a higher vibration fracture resistance under constant-force conditions. On the other hand, under constant initial deflection conditions the vibration life is proportional to the yield strength of the specimen. In addition, the major cracks of the ST specimens propagate mainly transgranularly, and the crack growth along the persistent slip bands can also be observed occasionally. As for other samples, main crack propagates transgranularly but the slip band cracking feature is absent. Notably, grain boundaries don’t affected the growth of the major crack of the ST and UA specimens, but slightly change the propagation direction of the cracks of the PA and OA samples.
Worthy of notice is that, the vibration life of the 7075-T651 samples undergoing stretch and peak aging treatments possess a lower vibration life in comparison with aforementioned artificially aged samples without the pre-strain under constant force conditions. This result suggests that the stretched 7075 alloys are not suitable to be applied under the vibration environment.
第七章 參考文獻
1.P. I. Welch, Clausthal-Zellerfeld, and A. C. Pickard, Derby, “The Effect of
Texture on Fatigue Crack Propagation in Aluminum Alloy 7075”,Aluminium, 1985 vol. 61, no. 5, pp. 332-335.
2.J. M. Meininger, S. L. Dickerson, and J. C. Gibeling, “Observations of Tension/Compression Asymmetry in the Cyclic Deformation of Aluminum Alloy 7075.”, Fatigue Fract. Engng Mater. Struct. vol. 19,no.1, pp. 85-97.
3.S. S. Rao, “Mechanical Vibrations”, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.
4.R. F. Stridel, Jr., John Wiley, and Sons, “An Introduction to Mechanical
Vibration”, Inc., New York, 1988, 3rd ed., pp. 96-226.
5.振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992年,38-57頁。
6.B. G. Korenev and L. M. Reznikov, John Wiley and Sons, “Theory and Technical Application”, Dynamic Vibration Absorbers, Inc., England,1993, pp. 1-80.
7.A. A. Shabana, Springer-Verlag, “Discrete and Continuous Systems”, Theory of Vibration, vol.2, New York, 1991, pp. 1-40.
8.洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
9.S. E. Urreta De Pereyra, H. Bertorello and A. A. Ghilarducci De Salva, "Precipitation and Grain Boundary Internal Friction Peaks in Al-Mg-Si”,
Phys. Stat. Sol., 1988, vol. 108, pp. 577-586.
10.S. E. Urreta De Pereyra, A. A. Ghilarducci De Salva and F. Loucher,
“Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., 1993,
vol. 139, pp. 345-360.
11.E. Carreno-Morelli, S. E. Urreta De Pereyra and A. A. Ghilarducci De
Salva, “High Temperature Damping in Al-Mg-Si Industrial Alloys”, Phys.
Stat. Sol., 1996, vol. 158, pp.449-462.
12.Dentstoras and A. D. Dimarogonas, “Resonance Controlled Fatigue
Crack Propagation”, Eng. Fract. Mech., 1983, vol. 17, no. 4, pp.381-386.
13.江東昇,“亞共晶鋁-矽(-鎂)合金之共振傳播行為研究”,國立成功大學材料科學及工程學系,博士論文,民國88年。
14.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Nondestructive
Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction
and Elasticity”, J. Mater. Res., 1993, vol. 8, pp. 2216-2223.
15.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by
Resonant Frequency Measurements”, Metall. Trans. A, 1995, Vol. 26A, pp. 1123-1127.
16.D. Taylor, Butterworth and Co. “Fatigue Threshold”, Ltd, 1989, pp. 71-91.
17.S. Suresh, “Fatigue of Materials”, Cambridge University Press. New York, 1991, pp. 292.
18.Elementary Engineering Fracture Mechanics, D. Broek, Martinus Nijhoff Publishers, 1984, pp. 158-163.
19.S. Suresh, “Crack Deflection Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., 1983, Vol. 14A, pp. 2375-2385.
20.W. Elber, Eng. Fract. Mech., “Fatigue-Crack Closure under Cyclic Tension”, 1971, Vol. 2, pp. 37-45.
21.S. Suresh and R. O. Ritchie, “A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness”, Metall. Trans. A, 1982, vol. 13A, pp. 1627-1631.
22.S. H. Wang, C. Muller and H. E. Exner, “A Model for Roughness-Induced Fatigue Crack Closure”, Metall. Mater. Trans A, 1998, Vol. 29A, pp. 1933-1939.
23.S. Suresh and R. O. Ritchie, “Mechanistic Dissimilarities Between Enviromentally Influenced Fatigue-Crack Propagation at Near-Threshold and Higher Gowth Rates in Lower Strength Steels”, Metal Sci., 1982, Vol.16, pp. 529-538.
24.S. Suresh, “Fatigue Crack Deflection and Fracture Surface Contact Micromechanical Models”, Metall. Trans. A, 1985, vol. 16A, pp.249-260.
25.R. O. Ritchie, “Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding”, Mater. Sci. Eng., 1988, vol. A103, pp. 15-28.
26.W. J. Drury, A. M. Gokhale and S. D. Antolovich, “Effect of Crack Surface Geometry on Fatigue Crack Closure”, Metall. Trans. A, 1995, vol. 26A, pp. 2651-2663.
27.E. Horbogen and K. H. ZumGahr, “Distribution of Plastic Strain in Alloys
Contain Small Particles”, Metallography, 1975, vol. 8, pp. 181-202.
28.D. N. Hanlon and W. M. Rainforth, “Some Observations on Cyclic Deformation Structure in the High-Strength Commercial Aluminum Alloy AA7150”, Metall. Mater. Trans. A, 1998, vol. 29A, pp.2727-2736.
29.F. S. Lin and E. A. Starke, Jr., “The Effect of Copper Content and Deformation Mode on the Fatigue Crack Propagation of Al-6Zn-2Mg-xCu Alloys at Low Stress Intensities”, Mater. Sci. Eng., 1980, vol. 45. pp.153-165.
30.R. D. Cater, E. W. Lee and E. A. Strake, Jr., “The Effect of Microstructure and Environment on Fatigue Crack Closure of 7475 Aluminum Alloy”, Metall. Trans. A, 1984, vol.15A, pp. 555-563.
31.E. Zaiken and R. O. Ritchie, “On the Development of Crack Closure and the Threshold Condition for Short and Long Fatigue Cracks in 7150 Aluminum Alloy”, Metall. Trans. A, 1985, vol. 16A, pp.1467-1477.
32.E. Zaiken and R. O. Ritchie, “Effect of Microstructure on the Fatigue
7150”, Mater. Sci. Eng., 1985, vol. 70,pp. 151-160.
33.J. Lindigkeit, G. Terlinde, A. Gysler and G. Lutjering, “The Effect of Grain Size on the Fatigue Crack Propagation Behavior of Age-Hardening Alloys in Inert and Corrosive Environment”, Acta Metall. 1979, vol. 27, pp. 1717-1726.
34.B. L. Jo, D. S. Park and S. W. Nam, “Effect of Mn Dispersoid on the Fatigue Crack Propagation of Al-Zn-Mg Alloys”, Metall. Mater. Trans. A, 1996, vol. 27A, pp. 490-493.
35.B. L. Jo, D. S. Park and S. W. Nam, “Effect of Mn-Dispersoid on the Low-Cycle Fatigue Life of Al-Zn-Mg Alloys”, Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1547-1550.
36.黃振賢,“金屬熱處理”,大揚出版社,1998年。
37.John E. Hatch, “Aluminum Properties and Physical Metallurgy”, American Society for Metals, Metals Park, Ohio, 1984.
38.賴耿陽,”非鐵合金鑄物”,復漢出版社,1977年。
39.T. H. Sanders, Jr. and E. A. Strake, Jr. :Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys, Metall. Trans., 1976, vol. 7A, pp.1407-1418.
40.K. Asano and K. I. Hirano, ”Precipitation Process in an Al-Zn-Mg Alloy”,
Trans. JIM, 1968, vol. 9, pp. 24-34.
41.G. W. Lorimer and R. B. Nicholson, “Further Result on the Nucleation of Precipitates in the Al-Zn-Mg System”, Acta Metall., 1966, vol. 14, pp.
1009-1013.
42.C. P. You, A. W. Thompson, and I. M. Bernstein, “Ductile Fracture Processes in 7075 Aluminum”, Metall. Material. Trans. A, 1995, vol. 26A, pp. 407-415.
43.W. G. Truckner, J. T. Staley, R. J. Bucci, and A. B. Thakker, “Effects of Microstrcture on Fatigue Crack Growth of High-Strength Aluminum Alloys, AFML-TR-76-169, Oct. 1976.
44.鄭敦文,“高強度航空用鋁合金7075-T651及2024-T351振動破壞特性探討”,國立成功大學材料科學及工程學系,學士論文,民國92年。
45.W. Wang and G. Ma, “The Mechanical Properties and Microstructure of a Rapidly Solidified Al-3.99Cu-2.34Li-0.21Zr Alloy”, Material Science and Engineering A, 1990, vol. A123, pp. 193-200.
46.陳美華,“低含量Al-Cu-Li合金之拉伸與共振變形破壞性探討”,國立成功大學材料科學及工程學系,碩士論文,民國89年。