| 研究生: |
曹書涵 Tsao, Shu-Han |
|---|---|
| 論文名稱: |
老人跌倒者與非跌倒者雙重任務步態與臨床測試表現之比較 Comparing the performance of dual task gait and clinical tests between old fallers and non-fallers |
| 指導教授: |
卓瓊鈺
Cho, Chiung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 跌倒 、老人 、雙重任務 、步態 、肌力 、平衡 、臨床測試 |
| 外文關鍵詞: | Fall, Older adults, Dual task, Gait, Muscle strength, Balance, Clinical test |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
背景與目的: 跌倒及其相關的後遺症對老人而言是一大健康問題。根據世界衛生組織的統計,每年約有28-35%的老年人會發生跌倒。跌倒會造成骨折、創傷性腦損傷、甚至死亡。因此找到一個理想的跌倒風險評估來篩檢出老年人中潛在的跌倒者,以利於及早進行介入,進而預防跌倒是很重要的。目前的文獻顯示平衡、步態與肌力等因子或評估測試,是和跌倒最相關的。最近的研究也指出,雙重任務情況下測量到的步態參數適合用來預測跌倒風險。然而,對於哪一種因子或評估測試最適合評估老年人的跌倒風險,目前並沒有共識。由於跌倒是多種因素造成的結果,結合多個不同領域的身體評估測試或許會比針對單一領域的評估測試更能偵測到老人的跌倒風險。因此本篇研究的目的為: (1)比較老人跌倒者與非跌倒者的步態與認知任務表現是否不同、(2)比較使用多個不同面向的因子與僅使用單一因子來區分老人跌倒者與非跌倒者的效果是否有差異。此外,本篇研究亦會探討不同雙重任務對老人步態的影響。
方法: 本研究招募了20位跌倒者與20位非跌倒者,皆為65歲以上的老年人。受試者在實驗中會在單一任務與雙重任務下測量步態與認知任務表現與肌力,並接受功能性表現測試。在雙重任務步態測試中,有四種認知任務(兩種Stroop test、連續減一與連續減三)會和走路一起執行。本研究使用二因子變異數重複測量分析(重複因子為情況)比較兩組受試者步態與認知任務表現的測量結果。若發現主效果或交互作用,會使用獨立t檢定來比較組間或情況間的差異。獨立t檢定也會用來比較兩組受試者的肌力與功能性表現測試的測量結果。此外,單變量羅吉斯迴歸與多變量羅吉斯迴歸則會用來比較使用單一因子或多個因子來區分老人跌倒者與非跌倒者的效果。
結果: 在所有的步態參數與認知任務表現結果中都沒有發現組別與情況的交互作用。研究者只有在步長上發現組別的主效果(p=.028),進一步分析,發現有三個情況下(單一任務行走、Stroop test-1s、連續減一),跌倒者的步長顯著比非跌倒者的步長短(p皆<.05)。此外,研究者在所有的步態參數與認知任務表現上都有發現情況的主效果(p皆<.05),其中在雙重任務情況下的步態參數表現幾乎都明顯比單一任務情況下來的差(p皆<.05)。另外,在Stroop test-2s和Stoop test-1s情況下的步長與標準化步長比在連續減一和減三的情況短(p皆<.05)。在連續減三情況下的跨步時間、站立時間、擺盪時間與雙腳站立時間皆比其它情況來的長(p皆<.05)。在其他臨床測試結果中,標準化右側腳趾屈曲肌力(p=.049)與TUG測試(p=.043)組間也有顯著差異。在單變量羅吉斯迴歸中,三個情況下的步長(單一任務行走、Stroop test-1s、連續減一)皆為能顯著區分跌倒者的變數(p皆<.05),尤其以連續減一情況下的步長達到最高的顯著水準(p=.016)。在多變量羅吉斯迴歸中,在與標準化右側腳趾屈曲肌力的搭配下,只有連續減一情況下的步長為能顯著區分出跌倒者的變數(p<.05)。
結論: 相較於非跌倒者而言,跌倒者步長較短、TUG測試時間較長、標準化右側腳趾屈曲肌力較小。雙重作業連續減一情況下的步長可能是最能區分老人跌倒者的步態參數。此外,將多個分別來自平衡、步態與肌力領域的因子結合並沒有比單一因子更能區辨老人跌倒者。而雙重任務的確會影響到受試者的步態,其中Stroop test-2s與Stroop test-1s對步長影響最大,而連續減三則對大部分與時間相關的步態參數造成最大的影響。然而此篇研究為橫斷性研究,其結果是否能應用於預測老人未來跌倒仍需要更多研究繼續探討。
Abstract
Background and purposes: Among older adults, falls and their consequences are a major health problem. According to World Health Organization, 28-35% of people over 65 years old fall every year. Falls could lead to fractures, traumatic brain injury and even death. Therefore, an optimal screening assessment for older adults is needed to identify potential fallers so that interventions can be applied in the early stage of frailty. According to previous studies, the factors and assessments from the domains of balance, gait, and muscle strength were the most common and consistent factors related falls. Recently, gait parameters assessed in the dual task condition were also shown to be promising predictors of fall risk. However, there is no consensus on which assessment of fall risk is the most optimal for the elderly. Since the causes of fall are multifactorial, combining different tests that assess different aspects of the elderly’s health may be more sensitive than a single test to detect fall risk in older adults. The purposes of this study were: (1) to compare the performance of gait and clinical tests between old fallers and non-fallers; (2) to determine whether using a combination of variables from more than one domain of health was better than using single variable to discriminate old fallers from non-fallers. Furthermore, the dual task effect on gait was investigated.
Methods: Twenty fallers and twenty non-fallers aged 65 or above were recruited. The participants need to encounter assessments of gait and cognitive task performance in both single task and dual task conditions, muscle strength tests, and functional performance-based tests. Four cognitive tasks (Stroop test-2s, Stroop test-1s, counting backward by 1, and counting backward by 3) were combined with walking as the dual task condition. Two-way ANOVA with repeated measure was used to analyze the main effect of group or condition and the interaction of both factors on gait parameters and cognitive task performance. Independent t test was used for further analysis to compare the difference between groups or conditions of gait parameters and cognitive task performance. Independent t test was also used to analyze the group difference on muscle strength and functional performance-based tests. Besides, univariate and multivariate logistic regression were used to analyze the effect of using single variable or multiple variables to discriminate fallers from non-fallers.
Results: For the gait parameters and cognitive task performance, no interaction of group and condition was found. The main effect of group was only found on step length (p=.028). Step length measurements in the conditions of walking, Stroop test-1s, and counting backward by 1 were significantly shorter in fallers than non-fallers (all p<.05). The main effects of condition were found on all gait parameters and cognitive task performance (all p<.05). The performance of most gait parameters was significantly worse in dual task than single task condition (all p<.05). Regarding the gait performance in different dual task conditions, the step length and normalized step length in the conditions of Stoop test-2s and Stoop test-1s were shorter than those in the conditions of counting backward by 1 and by 3 (all p<.05). The stride time, stance time, swing time and double support time in the condition of counting backward by 3 were significantly longer than those in other conditions (all p<.05). Significant group differences were also found on normalized right toe flexor strength (p=.049) and Timed-Up-and-Go (TUG) test (p=.043). In the univariate logistic regression, step length in the conditions of walking (p=.032), Stroop test-1s (p=.047), and counting backward by 1 (p=.016) were significant variables to discriminate fallers from non-fallers. The step length in the condition of counting backward by 1 has reached the highest significant level. In the multivariate logistic regression, step length in the condition of counting backward by 1 was the only significant variable to discriminate fallers from non-fallers while being combined with normalized right toe flexor strength (p<.05).
Conclusion: Fallers had shorter step length, longer TUG time, and smaller normalized right toe flexor strength than non-fallers. Step length in the condition of counting backward by 1 seems to be the most sensitive parameter to discriminate fallers from non-fallers. The combination of the variables from the domains of balance, gait, and muscle strength had no superior benefit compared with single variable in discriminating fallers. In addition, dual task indeed affected gait performance of the participants. Among the cognitive tasks, Stroop test-2s and Stroop test-1s had the greatest impact on step length, while counting backward by 3 had the greatest impact on temporal gait parameters. Since this is a cross-sectional study, whether these results could be used to predict future falls in older adults needs further investigation.
References
1. Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., et al. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16(1), 61-75.
2. Alden, D., Austin, C., & Sturgeon, R. (1989). A correlation between the Geriatric Depression Scale long and short forms. J Gerontol, 44(4), P124-125.
3. Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., & Cockburn, J. (2011). Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev, 35(3), 715-728.
4. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev, 16(1), 17-42.
5. Ambrose, A. F., Paul, G., & Hausdorff, J. M. (2013). Risk factors for falls among older adults: a review of the literature. Maturitas, 75(1), 51-61.
6. Aminian, K., Najafi, B., Bula, C., Leyvraz, P. F., & Robert, P. (2002). Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech, 35(5), 689-699.
7. Asmussen, E., & Heebøll-Nielsen, K. (1962). Isometric muscle strength in relation to age in men and women. Ergonomics, 5(1), 167-169.
8. Bazett-Jones, D. M., Cobb, S. C., Joshi, M. N., Cashin, S. E., & Earl, J. E. (2011). Normalizing hip muscle strength: establishing body-size-independent measurements. Arch Phys Med Rehabil, 92(1), 76-82.
9. Baddely, A., & Hitch, G. (1974). Working memory. In Bower, G.H. (Ed.), The Psychology of Learning and Motivation: Vol. 8. (pp 47-89). New York, NY: Academic Press
10. Beauchet, O., Allali, G., Annweiler, C., Berrut, G., Maarouf, N., Herrmann, F. R., et al. (2008). Does change in gait while counting backward predict the occurrence of a first fall in older adults? Gerontology, 54(4), 217-223.
11. Beauchet, O., Annweiler, C., Allali, G., Berrut, G., Herrmann, F. R., & Dubost, V. (2008). Recurrent falls and dual task–related decrease in walking speed: Is there a relationship? J Am Geriatr Soc, 56(7), 1265-1269.
12. Beauchet, O., Dubost, V., Allali, G., Gonthier, R., Hermann, F. R., & Kressig, R. W. (2007). 'Faster counting while walking' as a predictor of falls in older adults. Age Ageing, 36(4), 418-423.
13. Berg, K., Wood-Dauphine, S., Williams, J., & Gayton, D. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiother Can, 41(6), 304-311.
14. Berg, W. P., Alessio, H. M., Mills, E. M., & Tong, C. (1997). Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing, 26(4), 261-268.
15. Bischoff, H. A., Stähelin, H. B., Monsch, A. U., Iversen, M. D., Weyh, A., Von Dechend, M. et al. (2003). Identifying a cut‐off point for normal mobility: a comparison of the timed ‘up and go’test in community‐dwelling and institutionalised elderly women. Age Ageing, 32(3), 315-320.
16. Bohannon, R. W. (2006). Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther, 29(2), 64-68.
17. Bohannon, R. W., Bubela, D. J., Magasi, S. R., Wang, Y. C., & Gershon, R. C. (2010). Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc Sci, 18(4), 235-240.
18. Bohannon, R. W., & Schaubert, K. (2005). Long-term reliability of the timed up-and-go test among community-dwelling elders. J Phys Ther Sci, 17(2), 93-96.
19. Bootsma‐van der Wiel, A., Gussekloo, J., De Craen, A. J., Van Exel, E., Bloem, B. R., & Westendorp, R. G. (2003). Walking and talking as predictors of falls in the general population: the Leiden 85‐plus study. J Am Geriatr Soc, 51(10), 1466-1471.
20. Bridenbaugh, S. A., & Kressig, R. W. (2011). Laboratory review: the role of gait analysis in seniors' mobility and fall prevention. Gerontology, 57(3), 256-264.
21. Callisaya, M. L., Blizzard, L., Schmidt, M. D., Martin, K. L., McGinley, J. L., Sanders, L. M., et al. (2011). Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing, 40(4), 481-487.
22. Callisaya, M. L., Blizzard, L., Schmidt, M. D., McGinley, J. L., Lord, S. R., & Srikanth, V. K. (2009). A population-based study of sensorimotor factors affecting gait in older people. Age Ageing, 38(3), 290-295.
23. Candow, D. G., & Chilibeck, P. D. (2005). Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci, 60(2), 148-156.
24. Cebolla, E. C., Rodacki, A. L., & Bento, P. C. (2015). Balance, gait, functionality and strength: comparison between elderly fallers and non-fallers. Braz J Phys Ther, 19(2), 146-151.
25. Chiba, H., Ebihara, S., Tomita, N., Sasaki, H., & Butler, J. P. (2005). Differential gait kinematics between fallers and non‐fallers in community‐dwelling elderly people. Geriatr Gerontol Int, 5(2), 127-134.
26. Chiu, A., Au-Yeung, S., & Lo, S. K. (2003). A comparison of four functional tests in discriminating fallers from non-fallers in older people. Disabil Rehabil, 25(1), 45-50.
27. Chu, Y. H., Tang, P. F., Peng, Y. C., & Chen, H. Y. (2013). Meta-analysis of type and complexity of a secondary task during walking on the prediction of elderly falls. Geriatr Gerontol Int, 13(2), 289-297.
28. Commandeur, D., Klimstra, M. D., MacDonald, S., Inouye, K., Cox, M., Chan, D., et al. (2018). Difference scores between single-task and dual-task gait measures are better than clinical measures for detection of fall-risk in community-dwelling older adults. Gait Posture, 66, 155-159.
29. Delbaere, K., Close, J. C., Mikolaizak, A. S., Sachdev, P. S., Brodaty, H., & Lord, S. R. (2010). The Falls Efficacy Scale International (FES-I). A comprehensive longitudinal validation study. Age Ageing, 39(2), 210-216.
30. Ebersbach, G., Dimitrijevic, M. R., & Poewe, W. (1995). Influence of concurrent tasks on gait: a dual-task approach. Percept Mot Skills, 81(1), 107-113.
31. Faulkner, K. A., Redfern, M. S., Cauley, J. A., Landsittel, D. P., Studenski, S. A., Rosano, C. et al. (2007). Multitasking: association between poorer performance and a history of recurrent falls. J Am Geriatr Soc, 55(4), 570-576.
32. Gafner, S. C., Bastiaenen, C. H., Ferrari, S., Gold, G., Terrier, P., Hilfiker, R., et al. (2018). Hip muscle and hand-grip strength to differentiate between older fallers and non-fallers: a cross-sectional validity study. Clin Interv Aging, 13, 1-8.
33. Ganz, D. A., Bao, Y., Shekelle, P. G., & Rubenstein, L. Z. (2007). Will my patient fall? JAMA, 297(1), 77-86.
34. Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil, 82(8), 1050-1056.
35. Herman, T., Giladi, N., & Hausdorff, J. M. (2011). Properties of the 'timed up and go' test: more than meets the eye. Gerontology, 57(3), 203-210.
36. Herman, T., Mirelman, A., Giladi, N., Schweiger, A., & Hausdorff, J. M. (2010). Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci, 65(10), 1086-1092.
37. Houglum, P. A., & Bertoti, D. B. (2011). Brunnstrom's clinical kinesiology (6 ed.). Philadelphia, PA: FA Davis.
38. Hu, M., Maruyama, H., & Akiyama, S. (2009). An approach to assessment of the fall risk for the elderly by probe reaction time during walking. J Phys Ther Sci, 21(4), 311-316.
39. Isles, R. C., Choy, N. L. L., Steer, M., & Nitz, J. C. (2004). Normal values of balance tests in women aged 20–80. J Am Geriatr Soc, 52(8), 1367-1372.
40. Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985), 89(1), 81-88.
41. Jones, R. N., & Gallo, J. J. (2002). Education and sex differences in the Mini-Mental State Examination: effects of differential item functioning. J Gerontol B Psychol Sci Soc Sci, 57(6), 548-558.
42. Judge, J. O., Davis, R. B., 3rd, & Ounpuu, S. (1996). Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci, 51(6), M303-312.
43. Katoh, M., & Yamasaki, H. (2009). Comparison of reliability of isometric leg muscle strength measurements made using a hand-held dynamometer with and without a restraining belt. J Phys Ther Sci, 21(1), 37-42.
44. Kempen, G. I., Todd, C. J., Van Haastregt, J. C., Zijlstra, G. A., Beyer, N., Freiberger, E. et al. (2007). Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in older people: results from Germany, the Netherlands and the UK were satisfactory. Disabil Rehabil, 29(2), 155-162.
45. Kim, Y. W., Kwon, O. Y., Cynn, H. S., Weon, J. H., Yi, C. H., & Kim, T. H. (2011). Comparison of toe plantar flexors strength and balancing ability between elderly fallers and non-fallers. J Phys Ther Sci, 23(1), 127-132.
46. Kressig, R. W., Herrmann, F. R., Grandjean, R., Michel, J. P., & Beauchet, O. (2008). Gait variability while dual-tasking: fall predictor in older inpatients? Aging Clin Exp Res, 20(2), 123-130.
47. Lee, D. K., Kang, M. H., Lee, T. S., & Oh, J. S. (2015). Relationships among the Y balance test, Berg Balance Scale, and lower limb strength in middle-aged and older females. Braz J Phys Ther, 19(3), 227-234.
48. Liaw, M. Y., Chen, C. L., Pei, Y. C., Leong, C. P., & Lau, Y. C. (2009). Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med J, 32(3), 297-304.
49. Lord, S. R., Lloyd, D. G., & Li, S. K. (1996). Sensori-motor function, gait patterns and falls in community-dwelling women. Age Ageing, 25(4), 292-299.
50. Lusardi, M. M., Fritz, S., Middleton, A., Allison, L., Wingood, M., Phillips, E. et al. (2017). Determining risk of falls in community dwelling older adults: a systematic review and meta-analysis using posttest probability. J Geriatr Phys Ther, 40(1), 1-36.
51. Lusardi, M. M., Pellecchia, G. L., & Schulman, M. (2003). Functional performance in community living older adults. J Geriatr Phys Ther, 26(3), 14.
52. Maki, B. E. (1997). Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc, 45(3), 313-320.
53. Maki, B. E., Holliday, P. J., & Topper, A. K. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol, 49(2), M72-84.
54. Mann, R. A., & Hagy, J. L. (1979). The function of the toes in walking, jogging and running. Clin Orthop Relat Res, (142), 24-29.
55. Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech, 35(4), 537-542.
56. Menant, J. C., Schoene, D., Sarofim, M., & Lord, S. R. (2014). Single and dual task tests of gait speed are equivalent in the prediction of falls in older people: a systematic review and meta-analysis. Ageing Res Rev, 16, 83-104.
57. Menz, H. B., Morris, M. E., & Lord, S. R. (2006). Foot and ankle risk factors for falls in older people: a prospective study. J Gerontol A Biol Sci Med Sci, 61(8), 866-870.
58. Mickle, K. J., Munro, B. J., Lord, S. R., Menz, H. B., & Steele, J. R. (2009). ISB Clinical Biomechanics Award 2009: toe weakness and deformity increase the risk of falls in older people. Clin Biomech (Bristol, Avon), 24(10), 787-791.
59. Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A. et al. (2012). Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PloS one, 7(6).
60. Misu, S., Doi, T., Asai, T., Sawa, R., Tsutsumimoto, K., Nakakubo, S. et al. (2014). Association between toe flexor strength and spatiotemporal gait parameters in community-dwelling older people. J Neuroeng Rehabil, 11(1), 143.
61. Moreland, J. D., Richardson, J. A., Goldsmith, C. H., & Clase, C. M. (2004). Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc, 52(7), 1121-1129.
62. Morris, M., Osborne, D., Hill, K., Kendig, H., Lundgren-Lindquist, B., Browning, C., et al. (2004). Predisposing factors for occasional and multiple falls in older Australians who live at home. Aust J Physiother, 50(3), 153-159.
63. Muhaidat, J., Kerr, A., Evans, J. J., & Skelton, D. A. (2013). Exploring gait-related dual task tests in community-dwelling fallers and non-faller: A pilot study. Physiother Theory Pract, 29(5), 351-370.
64. Muir, S. W., Berg, K., Chesworth, B., & Speechley, M. (2008). Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: a prospective study. Phys Ther, 88(4), 449-459.
65. Nordin, E., Moe-Nilssen, R., Ramnemark, A., & Lundin-Olsson, L. (2010). Changes in step-width during dual-task walking predicts falls. Gait Posture, 32(1), 92-97.
66. Pardasaney, P. K., Latham, N. K., Jette, A. M., Wagenaar, R. C., Ni, P., Slavin, M. D., et al. (2012). Sensitivity to change and responsiveness of four balance measures for community-dwelling older adults. Phys Ther, 92(3), 388-397.
67. Park, S. H. (2018). Tools for assessing fall risk in the elderly: a systematic review and meta-analysis. Aging Clin Exp Res, 30(1), 1-16.
68. Pavol, M. J., Owings, T. M., Foley, K. T., & Grabiner, M. D. (1999). Gait characteristics as risk factors for falling from trips induced in older adults. J. Gerontol. A Biol Sci Med Sci, 54(11), M583-M590.
69. Perry, M. C., Carville, S. F., Smith, I. C., Rutherford, O. M., & Newham, D. J. (2007). Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol, 100(5), 553-561.
70. Pijnappels, M., Reeves, N. D., & van Dieën, J. H. (2008). Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol, 102(5), 585-592.
71. Riddle, D. L., & Stratford, P. W. (1999). Interpreting validity indexes for diagnostic tests: an illustration using the Berg balance test. Phys Ther, 79(10), 939-948.
72. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex, 15(11), 1779-1790.
73. Rogers, M. W., Hedman, L. D., Johnson, M. E., Cain, T. D., & Hanke, T. A. (2001). Lateral stability during forward-induced stepping for dynamic balance recovery in young and older adults. J Gerontol A Biol Sci Med Sci, 56(9), M589-594.
74. Rubenstein, L. Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing, 35 Suppl 2, ii37-ii41.
75. Schoene, D., Wu, S. M., Mikolaizak, A. S., Menant, J. C., Smith, S. T., Delbaere, K., et al. (2013). Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: systematic review and meta-analysis. J Am Geriatr Soc, 61(2), 202-208.
76. Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther, 80(9), 896-903.
77. Shumway-Cook, A., Ciol, M. A., Hoffman, J., Dudgeon, B. J., Yorkston, K., & Chan, L. (2009). Falls in the Medicare population: incidence, associated factors, and impact on health care. Phys Ther, 89(4), 324-332.
78. Smith, A. (1967). The serial sevens subtraction test. Arch Neurol, 17(1), 78-80.
79. Springer, S., Giladi, N., Peretz, C., Yogev, G., Simon, E. S., & Hausdorff, J. M. (2006). Dual-tasking effects on gait variability: the role of aging, falls, and executive function. Mov Disord, 21(7), 950-957.
80. Steffen, T. M., Hacker, T. A., & Mollinger, L. (2002). Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys Ther, 82(2), 128-137.
81. Sutherland, D., Cooper, L., & Daniel, D. (1980). The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am, 62(3), 354-363.
82. Suwa, M., Imoto, T., Kida, A., Iwase, M., & Yokochi, T. (2017). Age-related reduction and independent predictors of toe flexor strength in middle-aged men. J Foot Ankle Res, 10, 15.
83. Suwa, M., Imoto, T., Kida, A., & Yokochi, T. (2016). Early reduction in toe flexor strength is associated with physical activity in elderly men. J Phys Ther Sci, 28(5), 1472-1477.
84. Swanenburg, J., de Bruin, E. D., Uebelhart, D., & Mulder, T. (2010). Falls prediction in elderly people: a 1-year prospective study. Gait Posture, 31(3), 317-321.
85. Tombaugh, T. N., & McIntyre, N. J. (1992). The mini-mental state examination: a comprehensive review. J Am Geriatr Soc, 40(9), 922-935.
86. Toulotte, C., Thevenon, A., Watelain, E., & Fabre, C. (2006). Identification of healthy elderly fallers and non-fallers by gait analysis under dual-task conditions. Clin Rehabil, 20(3), 269-276.
87. Uritani, D., Fukumoto, T., & Matsumoto, D. (2012). Intrarater and Interrater Reliabilitiesfor a Toe Grip Dynamometer. J Phys Ther Sci, 24(8), 639-643.
88. Uritani, D., Fukumoto, T., Matsumoto, D., & Shima, M. (2014). Reference values for toe grip strength among Japanese adults aged 20 to 79 years: a cross-sectional study. J Foot Ankle Res, 7, 28.
89. Verghese, J., Buschke, H., Viola, L., Katz, M., Hall, C., Kuslansky, G., et al. (2002). Validity of divided attention tasks in predicting falls in older individuals: a preliminary study. J Am Geriatr Soc, 50(9), 1572-1576.
90. Verghese, J., Holtzer, R., Lipton, R. B., & Wang, C. (2009). Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci, 64(8), 896-901.
91. Wang, X., Ma, Y., Wang, J., Han, P., Dong, R., Kang, L. et al. (2016). Mobility and muscle strength together are more strongly correlated with falls in suburb-dwelling older Chinese. Sci Rep, 6, 25420.
92. Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Giladi, N., & Hausdorff, J. (2011). An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas, 32(12), 2003.
93. Wolfson, L., Whipple, R., Amerman, P., & Tobin, J. N. (1990). Gait assessment in the elderly: a gait abnormality rating scale and its relation to falls. J Gerontol, 45(1), M12-M19.
94. World Health Organization. (2007). WHO global report on falls prevention in older age. (9241563532). World Health Organization Retrieved from https://extranet.who.int/agefriendlyworld/wp-content/uploads/2014/06/WHo-Global-report-on-falls-prevention-in-older-age.pdf.
95. Yamada, M., Aoyama, T., Arai, H., Nagai, K., Tanaka, B., Uemura, K. et al. (2011). Dual‐task walk is a reliable predictor of falls in robust elderly adults. J Am Geriatr Soc, 59(1), 163-164.
96. Yogev‐Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Mov Disord, 23(3), 329-342.
97. Yoshida-Intern, S. (2007). A global report on falls prevention epidemiology of falls. Geneva: WHO.
98. Zizza, C. A., Ellison, K. J., & Wernette, C. M. (2009). Total water intakes of community-living middle-old and oldest-old adults. J Gerontol A Biol Sci Med Sci, 64A(4), 481-486.
99. 國民健康署(2019).106年健康促進統計年報.取自https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/10443/File_11960.pdf