| 研究生: |
陳琮翰 Chen, Tsung-Han |
|---|---|
| 論文名稱: |
氧化鎳薄膜電化學成長技術與特性研究 A study on the formation and property of NiO thin films by electrochemistry method |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 氧化鎳 、電化學 、穿透率 、退火溫度 、著色效率 |
| 外文關鍵詞: | NiO, Electrochemical, Transmittance, Annealing temperature, Coloration efficiency |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球暖化問題日益嚴重,科學家在綠建築領域中提出智能變色玻璃的構想,讓玻璃具有調色的功能,以減少電燈與冷氣的耗損,智能變色玻璃主要是將玻璃與變色材料結合,變色材料依照驅動方式分成熱致變色、光致變色與電致變色三種,其中熱致變色與光致變色具有無法客製化調整的缺點,而電致變色具有良好的光學變化與可調控的功能受到科學界的重視,近年來電致變色除了智慧節能窗外也應用在防眩光後視鏡等。
在電致變色材料中氧化鎳為典型的陽極著色材料,擁有良好的光學特性、電化學穩定性、記憶效應、低驅動電壓、價格低廉等;現階段氧化鎳材料大多採用溶膠凝膠法、濺鍍法等進行沉積,然而溶膠凝膠法需要1天的製程時間,濺鍍法則是試片大小受限,製程成本高等缺點,而且傳統製程氧化鎳在微結構上大多是片狀或是顆粒狀連續薄膜,光學上穿透率的可見光波長分佈中大多呈現30%的差異,導致穿透率分佈不均,而本研究提出電化學來製備氧化鎳薄膜,相較於傳統製程只需要30分鐘,成本也相對較低,符合商業化的需求,此外透過電化學陰陽極處理製備出半圓球狀不連續氧化鎳薄膜,有助於電解質的反應,光學上得到高度均勻的穿透率變化,對於電致變色效能有顯著提升。
本研究主要針對電化學陰陽極的處理進行探討,分別針對電鍍液、時間、溫度、電壓等進行分析,接著進行退火溫度的探討,本研究發現退火溫度在300℃到400℃有較穩定的循環伏安法結果,穿透率差(ΔT)也具有30%到40%的效果。
接著本研究在最佳化分析上,利用不同電流密度進行微結構探討,發現較小的電流密度讓粒子在顆粒上附著,使得表面占比減少,有利於電解質的反應,最後發現在電流密度2.5 mA/cm2,電鍍時間120 s有最佳的電致變色效果,穿透率差(ΔT)高達55%以上,著色效率高達75 cm2/C以上,轉換時間為均少於3秒,在商用化上具有相當大的優勢。
In recent years, global warming has been increasingly severe, prompting scientists to propose the concept of color-changing glass. The idea is to give glass the ability to change its color, aiming to reduce energy consumption from electrical appliances. Electrochromism, with its excellent optical changes and controllable functionality, has received significant attention from the scientific community.
Nickel oxide is a common material used in electrochromic applications, known for its memory effect, low driving voltage, and affordability. Nowadays, traditional processing methods for nickel oxide suffer from drawbacks such as long production times and high costs. In these conventional processes, the microstructure of nickel oxide often forms continuous thin films in the form of flakes or particles, resulting in a significant 30% variation in the single transmittance spectrum distribution. However, this study proposes an electrochemical process that only takes half an hour. By using electrochemical anode-cathode treatment, semi-spherical and discontinuous nickel oxide thin films are prepared, which aid in enhancing the electrolyte reaction and achieve highly uniform variations in optical transmittance.
This study conducted analyses on electrodeposition solutions, time, temperature, and voltage, followed by exploring the effect of annealing temperature. The research identified a more stable cyclic voltammetry result at annealing temperatures ranging from 300°C to 400°C. Furthermore, in the optimization analysis, different current densities were used to investigate the microstructure. The study found that at a current density of 2.5 mA/cm2 and an electroplating time of 120 seconds, the best electrochromic effect was achieved. The transmittance (ΔT) exceeded 55% and the coloring efficiency reached above 75 cm2/C with a switching time of less than 3 seconds. The nickel oxide thin film in this study has great potential in commercialization.
[1]C. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films, vol. 564, pp. 1-38, 2014.
[2]N, DeForest, A. Shehabi, J. O'Donnell, G. Garcia, J. Greenblatt, G. Guillermo, G. Jeffery, E. S. Lee, S. Stephen & M. J. Delia, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Building and Environment, vol. 89, pp. 107–117, 2015.
[3]US Dep. Energy, “Energy Efficiency Trends in Residential and Commercial Buildings,” US Dep. Energy, 2008.
[4]R. J. Mortimer, “Electrochromic materials,” Annual review of materials research, vol. 41, pp. 241-268, 2011.
[5]Y. Wang, E. L. Runnerstrom, & D. J. Milliron, “Switchable materials for smart windows,” Annual Review of Chemical and Biomolecular Engineering, vol. 7, pp. 283-304, 2016.
[6]X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, & H. Huang, “Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition,” Solar Energy Materials and Solar Cells, vol. 92, pp. 628-633, 2008.
[7]D. S. Dalavi, R. S. Devan, R. S. Patil, Y. R. Ma, & P. S. Patil, “Electrochromic performance of sol–gel deposited NiO thin film,” Materials Letters, vol. 90, pp. 60-63, 2013.
[8]J. H. Zhang, G. F. Cai, D. Zhou, H. Tang, X. L. Wang, C. D. Gu, & J. P. Tu, “Co-doped NiO nanoflake array films with enhanced electrochromic properties,” Journal of Materials Chemistry C, vol. 2, pp. 7013-7021, 2014.
[9]M. Zhang, X. Xu, Y. Gu, X. Cheng, J. Hu, K. Xiong, Y. Jiang, T. Fan, & J. Xu, “Porous and nanowire-structured NiO/AgNWs composite electrodes for significantly-enhanced supercapacitive and electrochromic performances,” Nanotechnology, vol. 32, 275405, 2021.
[10]J. R. A. Acuña, I. Perez, V. Sosa, F. Gamboa, J. T. Elizalde, R. Farías, D. Carrillo, J. L. Enríquez, A. Burrola, P. Mani, & P. Mani, “Sputtering power effects on the electrochromic properties of NiO films,” Optik, vol. 231, 166509, 2021.
[11]Q. Huang, Q. Zhang, Y. Xiao, Y. He, & X. Diao, “Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping,” Journal of Alloys and Compounds, vol. 747, pp. 416-422, 2018.
[12]Y. Ren, T. Fang, Y. Gong, X. Zhou, G. Zhao, Y. Gao, J. Jia, & Z. Duan, “Enhanced electrochromic performances and patterning of Ni–Sn oxide films prepared by a photosensitive sol–gel method,” Journal of Materials Chemistry C, vol. 7, pp. 6964-6971, 2019.
[13]X. Chen, Y. Zhao, W. Li, L. Wang, J. Xue, X. Zhang, & Y. Li, “NiO films prepared by e-beam evaporation for Mg2+ based electrochromic devices,” Optical Materials, vol. 124, 111959, 2022.
[14]C. G. Granqvist, P. C. Lansåker, N. R. Mlyuka, G. A. Niklasson, & E. Avendano, “Progress in chromogenics: New results for electrochromic and thermochromic materials and devices,” Solar Energy Materials and Solar Cells, vol. 93, pp. 2032-2039, 2009.
[15]P. Bamfield, “Chromic phenomena: technological applications of colour chemistry,” Royal Society of Chemistry, 2010.
[16]C. P. Harvey, & J. D. Tovar, “Main-chain photochromic conducting polymers,” Polymer Chemistry, vol. 2 pp. 2699-2706, 2011.
[17]J. N. Schrauben, R. Hayoun, C. N. Valdez, M. Braten, L. Fridley, & J. M. Mayer, “Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents,” Science, vol. 336, pp. 1298-1301, 2012.
[18]A. I. Gavrilyuk, “Photochromism in WO3 thin films,” Electrochimica Acta, vol. 44, pp. 3027-3037, 1999.
[19]Y. Wang, L. Pan, Y. Li, & A. I. Gavrilyuk, “Hydrogen photochromism in V2O5 layers prepared by the sol–gel technology,” Applied surface science, vol. 314, pp. 384-391, 2014.
[20]L. Pan, Y. Wang, X. Wang, H. Qu, J. Zhao, Y. Li, & A. Gavrilyuk, “Hydrogen photochromism in Nb2O5 powders,” Physical Chemistry Chemical Physics, vol. 16, pp. 20828-20833, 2014.
[21]M. Irie, T. Fukaminato, K. Matsuda, & S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chemical Reviews, vol. 114, pp. 12174-12277, 2014.
[22]R. J. Mortimer, “Electrochromic materials,” Chemical Society Reviews, vol. 26, pp. 147-156, 1997.
[23]V. K. Thakur, G. Ding, J. Ma, P. S. Lee, & X. Lu, “Hybrid materials and polymer electrolytes for electrochromic device applications,” Advanced materials, vol. 24, pp. 4071-4096, 2012.
[24]D. A. Wruck, & M. Rubin, “Structure and electronic properties of electrochromic NiO films,” Journal of the Electrochemical Society, vol. 140, 1097, 1993.
[25]C. L. Bird, & A. T. Kuhn, “Electrochemistry of the viologens,” Chemical Society Reviews, vol. 10, pp. 49-82, 1981.
[26]P. M. Beaujuge, & J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chemical reviews, vol. 110, pp. 268-320, 2010.
[27]J. Zhang, J. P. Tu, X. H. Xia, Y. Qiao, & Y. Lu, “An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte,” Solar Energy Materials and Solar Cells, vol. 93, pp. 1840-1845, 2009.
[28]Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, & Y. Li, “Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices,” Science China Chemistry, vol. 60, pp. 13-37, 2017.
[29]Z. Wang, X. Wang, S. Cong, F. Geng, & Z. Zhao, “Fusing electrochromic technology with other advanced technologies: A new roadmap for future development,” Materials Science and Engineering: R: Reports, vol. 140, 100524, 2020.
[30]Y. Huang, B. Wang, F. Chen, Y. Han, W. Zhang, X. Wu, R. Li, Q. Jiang, X. Jia, & R. Zhang, “Electrochromic materials based on ions insertion and extraction,” Advanced Optical Materials, vol. 10, 2101783, 2022.
[31]Y. Wei, M. Chen, W. Liu, L. Li, G. Zhang & Y. Yan, “Recent Process and Application of Electrochromism,” Journal of Aeronautical Materials, vol. 36, pp. 108-123, 2016.
[32]J. R. Platt, “Electrochromism, a possible change of color producible in dyes by an electric field,” The Journal of Chemical Physics, vol. 34, pp. 862-863, 1961.
[33]S. K. Deb, “A novel electrophotographic system,” Applied Optics, vol. 8, pp. 192-195, 1969.
[34]S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide,” Philosophical Magazine, vol. 27, pp. 801-822, 1973.
[35]C. G. Granqvist, “Handbook of inorganic electrochromic materials,” Elsevier, 1995.
[36]K. C. Liu, & M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors,” Journal of the Electrochemical Society, vol. 143, 124, 1996.
[37]V. Rai, R. S. Singh, D. J. Blackwood, & D. Zhili, “A review on recent advances in electrochromic devices: a material approach,” Advanced Engineering Materials, vol. 22, 2000082, 2020.
[38]A. Patra, K. Auddy, D. Ganguli, J. Livage, & P. K. Biswas, “Sol–gel electrochromic WO3 coatings on glass,” Materials Letters, vol. 58, pp. 1059-1063, 2004.
[39]Y. Ren, W. K. Chim, L. Guo, H. Tanoto, J. Pan, & S. Y. Chiam, “The coloration and degradation mechanisms of electrochromic nickel oxide,” Solar energy materials and solar cells, vol. 116, pp. 83-88, 2013.
[40]Y. Tian, Z. Li, S. Dou, X. Zhang, J. Zhang, L. Zhang, L. Wang, X. Zhao, & Y. Li, “Facile preparation of aligned NiO nanotube arrays for electrochromic application,” Surface and Coatings Technology, vol. 337, pp. 63-67, 2018.
[41]J. Wang, X. Huo, M. Guo, & M. Zhang, “A review of NiO-based electrochromic-energy storage bifunctional material and integrated device,” Journal of Energy Storage, vol. 47, 103597, 2022.
[42]F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, & H. F. Chen, “Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application,” Electrochimica Acta, vol. 111, pp. 86-91, 2013.
[43]Y. E. Firat, & A. Peksoz, “Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential,” Electrochimica Acta, vol. 295, pp. 645-654, 2019.
[44]J. Xue, W. Li, Y. Song, Y. Li, & J. Zhao, “Visualization electrochromic-supercapacitor device based on porous Co doped NiO films,” Journal of Alloys and Compounds, vol. 857, 158087, 2021.
[45]Y. Liu, C. Jia, Z. Wan, X. Weng, J. Xie, & L. Deng, “Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film,” Solar Energy Materials and Solar Cells, vol. 132, pp. 467-475, 2015.
[46]Y. He, T. Li, X. Zhong, M. Zhou, G. Dong, & X. Diao, “Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism,” Electrochimica Acta, vol. 316, pp. 143-151, 2019.
[47]G. F. Cai, J. P. Tu, J. Zhang, Y. J. Mai, Y. Lu, C. D. Gu, & X. L. Wang, “An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties,” Nanoscale, vol. 4, pp. 5724-5730, 2012.
[48]A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, & A. Hosny, Structure, “Optical and electrochromic properties of NiO thin films,” Physica B: Condensed Matter, vol. 405, pp. 3412-3420, 2010.
[49]S. Adhikari, & D. Sarkar, “High efficient electrochromic WO3 nanofibers,” Electrochimica Acta, vol. 138, pp. 115-123, 2014.
[50]Z. Yu, X. Jia, J. Du, & J. Zhang “Electrochromic WO3 films prepared by a new electrodeposition method,” Solar energy materials and solar cells, vol. 64, pp. 55-63, 2000.
[51]R. T. Wen, G. A. Niklasson, & C. G. Granqvist, “Sustainable rejuvenation of electrochromic WO3 films,” ACS Applied Materials & Interfaces, vol. 7, pp. 28100-28104, 2015.
[52]R. T. Wen, C. G. Granqvist, & G. A. Niklasson, “Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films,” Nature materials, vol. 14, pp. 996-1001, 2015.
[53]R. J. Martín-Palma, & A. Lakhtakia, “Vapor-deposition techniques,” In Engineered Biomimicry, pp. 383-398, 2013.
[54]A. Azens, L. Kullman, G. Vaivars, H. Nordborg, & C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics, vol. 113, pp. 449-456, 1998.
[55]C. Li, J. H. Hsieh, T. Y. Su, & P. L. Wu, “Experimental study on property and electrochromic function of stacked WO3/Ta2O5/NiO films by sputtering,” Thin Solid Films, vol. 660, pp. 373-379, 2018.
[56]A. Subrahmanyam, & A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Solar energy materials and solar cells, vol. 91, pp. 266-274, 2007.
[57]V. R. Buch, A. K. Chawla, & S. K. Rawal, “Review on electrochromic property for WO3 thin films using different deposition techniques,” Materials Today: Proceedings, vol. 3, pp. 1429-1437, 2016.
[58]K. Bewilogua, R. Wittorf, H. Thomsen, & M. Weber, “DLC based coatings prepared by reactive dc magnetron sputtering,” Thin Solid Films, vol. 447, pp. 142-147, 2004.
[59]M. Rakibuddin, M. A. Shinde, & H. Kim, Sol-gel fabrication of NiO and NiO/WO3 based electrochromic device on ITO and flexible substrate,” Ceramics International, vol. 46, pp. 8631-8639, 2020.
[60]C. G. Granqvist, “Oxide electrochromics: An introduction to devices and materials,” Solar Energy Materials and Solar Cells, vol. 99, pp. 1-13, 2012.
[61]D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, & D. Fitzmaurice, “Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films,” The Journal of Physical Chemistry B, vol. 104, pp. 11449-11459, 2000.
[62]S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, & G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano letters, vol. 4, pp. 1231-1235, 2004.
[63]M. Grätzel, “Ultrafast colour displays. Nature,” vol. 409, pp. 575-576, 2001.
[64]C. G. Granqvist, E. Avendano, & A. Azens, “Electrochromic coatings and devices: survey of some recent advances,” Thin Solid Films, vol. 442, pp. 201-211, 2003.
[65]B. Chatterjee, “Science and industry of Electropolishing,” Jahrb. Oberfl, vol. 71, pp. 71-93, 2015.
[66]謝無極,電鍍工程師手冊,北京化學工業出版社,2011。
[67]W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. D. Benedetto, S. Caporali & M. Innocenti, “Electroplating for decorative applications: Recent trends in research and development,” Coatings, vol. 8, 260, 2018.
[68]B. Lv, Z. Hu, X. Wang, & B. Xu, “Electrodeposition of nanocrystalline nickel assisted by flexible friction from an additive-free Watts bath,” Surface and Coatings Technology, vol. 270, pp. 123-131, 2015.
[69]A. Ciszewski, S. Posluszny, G. Milczarek, & M. Baraniak, “Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte,” Surface and Coatings Technology, vol. 183, pp. 127-133, 2004.
[70]M. A. Ibrahim, “Black nickel electrodeposition from a modified Watts bath,” Journal of Applied Electrochemistry, vol. 36, pp. 295-301, 2006.
[71]A. Saraby-Reintjes, & M. Fleischmann, “Kinetics of electrodeposition of nickel from watts baths,” Electrochimica Acta, vol. 29, pp. 557-566, 1984.
[72]N. P. Wasekar, P. Haridoss, S. K. Seshadri, & G. Sundararajan, “Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings,” Surface and Coatings Technology, vol. 291, pp. 130-140, 2016.
[73]M. Poroch–Seri, G. Gh, & T. L. Severin, “Study on the influence of current density and temperature about electrodepositions of nickel by electrolytes of type Watts,” Annals Suceava Univ Food Eng, vol. 8, pp. 16-23, 2019.
[74]J. Wojciechowski, M. Baraniak, J. Pernak, & G. Lota, “Nickel coatings electrodeposited from watts type baths containing quaternary ammonium sulphate salts,” Int. J. Electrochem. Sci, vol. 12, pp. 3350-3360, 2017.
[75]D. R. Turner, “Anode polarization effects of nickel in sulfuric acid,” Journal of The Electrochemical Society, vol. 98, 434, 1951.
[76]T. S. De Gromoboy, & L. L. Shreir, “The formation of nickel oxides during the passivation of nickel in relation to the potential/pH diagram,” Electrochimica Acta, vol. 11, pp. 895-904, 1966.
[77]B. MacDougall, & M. Cohen, “Mechanism of the anodic oxidation of nickel,” Journal of The Electrochemical Society, vol. 123, 1976.
[78]K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, & V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” Journal of Solid State Electrochemistry, vol. 12, pp. 1469-1479, 2008.
[79]O. Kosohin, & V. Mazanka, “Anode materials for oxidation of oxalic acid,” Journal of Chemical Technology and Metallurgy, vol. 57, pp. 137-140, 2022.
[80]P. T. Kissinger, & W. R. Heineman, “Cyclic voltammetry,” Journal of chemical education, vol. 60, 702, 1983.
[81]J. M. Savéant, “Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry,” John Wiley & Sons, 2006.
[82]D. H. Evans, K. M. O'Connell, R. A. Petersen, & M. J. Kelly, “Cyclic voltammetry,” Journal of chemical education, vol. 60, 290, 1983.
[83]J. F. Rusling, & S. L. Suib, “Characterizing materials with cyclic voltammetry,” Advanced Materials, vol. 6, pp. 922-930, 1994.
[84]J. J. V. Benschoten, J. Y. Lewis, W. R. Heineman, D. A. Roston, & P. T. Kissinger, “Cyclic voltammetry experiment,” Journal of Chemical Education, vol. 60, 772, 1983.
[85]A. J. Bard, L. R. Faulkner, & H. S. White, “Electrochemical methods: fundamentals and applications,” John Wiley & Sons, 2022.
[86]J. M. Savéant, “Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry”, John Wiley & Sons, 2006.
[87]胡啟章,電化學原理與方法,五南圖書出版有限公司,2002。
[88]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, & J. L. Dempsey, “A practical beginner’s guide to cyclic voltammetry,” Journal of chemical education, vol. 95, pp. 197-206, 2018.
[89]C. K. Chung, M. W. Liao, & O. K. Khor, “Fabrication of porous anodic aluminum oxide by hybrid pulse anodization at relatively high potential,” Microsystem technologies, vol. 20, pp. 1827-1832, 2014.
[90]K. K. Purushothaman, & G. Muralidharan, “The effect of annealing temperature on the electrochromic properties of nanostructured NiO films,” Solar Energy Materials and Solar Cells, vol. 93, pp. 1195-1201, 2009.
[91]G. Atak, & Ö. D. Coşkun, “Annealing effects of NiO thin films for all-solid-state electrochromic devices,” Solid State Ionics, vol. 305, pp. 43-51, 2017.
[92]J. Zhang, J. P. Tu, G. H. Du, Z. M. Dong, Y. S. Wu, L. Chang, D. Xie, G. F. Cai, X. L. Wang, “Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics,” Solar energy materials and solar cells, vol. 114, pp. 31-37, 2013.
[93]X. Li, K. Perera, J. He, A. Gumyusenge, & J. Mei, “Solution-processable electrochromic materials and devices: roadblocks and strategies towards large-scale applications,” Journal of Materials Chemistry C, vol. 7, pp. 12761-12789, 2019.
[94]S. D. Puckett, E. Taylor, T. Raimondo, & T. J. Webster, “The relationship between the nanostructure of titanium surfaces and bacterial attachment,” Biomaterials, vol. 31, pp. 706-713, 2010.
[95]P. Molitor, V. Barron, & T. Young, “Surface treatment of titanium for adhesive bonding to polymer composites: a review,” International Journal of Adhesion and Adhesives, vol. 21, pp. 129-136, 2001.
[96]M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, A. M. Teridi, T. S. Varley, K. U., Wijayantha, & C. A. Kirk, “Electrochromic and colorimetric properties of nickel (II) oxide thin films prepared by aerosol-assisted chemical vapor deposition,” ACS applied materials & interfaces, vol. 5, pp. 5675-5682, 2013.
[97]J. Denayer, G. Bister, P. Simonis, P. Colson, A. Maho, P. Aubry, B. Vertruyen, C. Henrist, V. Lardot, F. Cambier, & R. Cloots, “Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications,” Applied Surface Science, vol. 321, pp. 61-69, 2014.
[98]D. S. Dalavi, M. J. Suryavanshi, D. S. Patil, S. S. Mali, A. V. Moholkar, S. S. Kalagi, S. A. Vanalkar, S. R. Kang, J. H. Kim, & P. S. Patil, “Nanoporous nickel oxide thin films and its improved electrochromic performance: effect of thickness,” Applied Surface Science, vol. 257, pp. 2647-2656, 2011.
[99]C. C. Liao, “Lithium-driven electrochromic properties of electrodeposited nickel hydroxide electrodes,” Solar energy materials and solar cells, vol. 99, pp. 26-30, 2012.
[100]S. A. Mahmoud, S. A. Aly, M. Abdel-Rahman, & K. Abdel-Hady, “Electrochromic characterisation of electrochemically deposited nickel oxide films,” Physica B: Condensed Matter, vol. 293, pp. 125-131, 2000.
[101]X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, & H. Huang, Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, vol. 53, pp. 5721-5724, 2008.
校內:不公開