簡易檢索 / 詳目顯示

研究生: 李尚諭
Lee, Shang-Yu
論文名稱: 以機器學習建構環更年期婦女之安靜心跳率預測模型
Constructing a Resting Heart Rate Prediction Model for Perimenopausal Women Using Machine Learning
指導教授: 黃滄海
Huang, Tsang-Hai
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 55
中文關鍵詞: 停經環更年期安靜心率機器學習
外文關鍵詞: Menopause, Perimenopause, Resting Heart Rate, Machine Learning
相關次數: 點閱:57下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:停經症候群 (menopausal symptoms) 的健康管理為一個熱門的研究主題,其主要原因在於停經症狀對環更年期 (perimenopause) 婦女的生活品質有巨大的影響與衝擊。近年來,隨著穿戴式裝置的普及,使用者的生活歷程及部份生理資訊是可以被連續記錄下來的,而這些可貴的資料若能善加運用,例如透過長期地追蹤心跳率的變化,以追蹤健康狀況,將有助於環更年期婦女更好地管理停經症狀並減輕此族群在這個重要生命階段的身心壓力。研究目的:本研究將蒐集更年期婦女長期的心跳率資料,以機器學習的方式,建立安靜心跳率的預測模型。方法:(1)受試者:本研究將以過去所招募的1位環更年期婦女為對象,無任何與慢跑相關的慢性疾病。(2)實驗設計:本研究將使用過去受試者佩掛穿戴式裝置 (Garmin Venu SQ, Garmin, Taiwan) 期間所蒐集而得之資料,包括各式運動類型,每日行走的步數、距離、時間和各時段心跳率等,進一步使用Python進行資料整理並建立機械學習模式,建構出以前述運動行為指標、睡眠行為指標及心率指標預測隔日安靜心率之模式。(3)統計方法:以逐步迴歸進行分析和查驗安靜心跳率與其他指標之間的關聯性。結果: (1)隨機森林模型在多項性能指標上展現出較佳的表現,但整體而言,機器學習模型與統計方法之間無明顯差異。(2)特徵重要性排序顯示平均安靜心跳率為最關鍵預測因素。(3)當樣本數量達到約100天時,預測指標如R²、MAE和相關係數(r)均顯示出穩定性,進而提升模型的預測穩定性和可靠度。結論:在本研究中,機器學習模型與傳統統計方法在預測隔日安靜心率方面表現相近,數據的線性關係可能限制了機器學習複雜演算法的效益。此外,增加相關的睡眠和運動指標,對模型整體預測準確性的提升有限。

    Introduction: Managing menopausal symptoms is a popular research topic due to the significant impact these symptoms have on the quality of life for women in perimenopause. With the widespread use of wearable devices, part of users’ physiological data can now be continuously recorded. This valuable information, such as long-term heart rate monitoring to track health status, can help perimenopausal women better manage their symptoms and reduce physical and mental stress during this critical life stage.
    Aims: To collect heart rate data from perimenopausal women using wearable device and develop a predictive model for resting heart rate using machine learning.
    Methods: The study involved perimenopausal women equipped with Garmin Venu SQ wearable devices to monitor daily steps, distance, and heart rates. Python was utilized to organize the data and develop the predictive model.
    Results: The Random Forest model showed superior performance, but machine learning and statistical methods performed similarly overall. Feature importance analysis showed that the average resting heart rate is the key predictor. The model stabilized when the sample size reached about 100 days.
    Conclusion: Both machine learning and traditional statistical methods have similar outcomes in predicting next-day resting heart rate. The linear data relationships may limit the effectiveness of machine learning algorithms. Adding features related to the timing and consistency of sleep and exercise into the predictive model only slightly improve accuracy.

    中文摘要 i 英文摘要 ii 誌謝 vi 目錄 vii 圖目錄 xi 表目錄 xii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 操作型定義 2 第四節 研究限制 2 第五節 研究重要性 3 第貳章 文獻探討 4 第一節 女性進入更年期的生理 4 一、 停經的定義 4 二、 環更年期婦女 4 第二節 以安靜心率為反映身體狀況之指標 5 一、 健康況狀的指標 5 二、 睡眠品質的指標 6 三、 運動強度及規律性的指標 7 四、 選擇安靜心率而非心率變異性的原因 7 五、 小結 8 第三節 使用統計及機器學習模型預測安靜心律 8 一、 統計方法和機器學習在時序性資料的比較 8 二、 機器學習模型之選擇 9 三、 結語 10 第參章 研究方法 11 第一節 實驗流程 11 第二節 受試者 12 第三節 研究工具 12 第四節 數據整理 12 一、 數據預處理 12 二、 特徵提取 12 三、 模型建立和評估 12 第五節 13 第六節 數據分析(統計與機器學習) 13 第肆章 結果 17 第一節 不同的機器學習預測模型表現的比較 17 第二節 隨機森林模型預測中樣本數量與表現穩定度的關係 23 第三節 23 第四節 機器學習模型所使用特徵的重要性 26 第五節 統計迴歸預測模型的預測結果 26 第六節 運動量及強度的次數分佈圖 27 第伍章 討論 30 第一節 機器學習模型穩定可靠的關鍵:足夠的樣本量 30 第二節 心跳率衍生值的重要性 30 第三節 接近睡醒時間的平均心跳率 31 一、 夜間恢復過程 31 二、 心率的穩定性 31 第四節 運動的累積量和時間點的規律性對預測的影響 31 第五節 睡眠長度和時間點的規律性對預測的影響 32 第六節 壓力指標對預測的影響 33 第陸章 結論與建議 34 第一節 結論 34 一、 機器學習對於統計方法的比較 34 二、 指標的應用 34 第二節 建議與未來方向 34 一、 特徵選擇與製作 34 二、 嘗試不同的預測指標 34 三、 增加受試者數量 34 參考文獻 36

    1. 陳穎儒 (2021)。以穿戴式裝置之數據來源建構機器學習於預測安靜心跳之個案研究[未出版碩士論文]。國立成功大學。
    2. Avis, N. E., Colvin, A., Bromberger, J. T., Hess, R., Matthews, K. A., Ory, M., & Schocken, M. (2009). Change in health-related quality of life over the menopausal transition in a multiethnic cohort of middle-aged women: Study of Women's Health Across the Nation. Menopause, 16(5), 860-869. https://doi.org/10.1097/gme.0b013e3181a3cdaf
    3. Biegon, A., & McEwen, B. S. (1982). Modulation by estradiol of serotonin receptors in brain. The Journal of Neuroscience, 2(2), 199. https://doi.org/10.1523/JNEUROSCI.02-02-00199.1982
    4. Blümel, J. E., Chedraui, P., Baron, G., Belzares, E., Bencosme, A., Calle, A., Danckers, L., Espinoza, M. T., Flores, D., Gomez, G., Hernandez-Bueno, J. A., Izaguirre, H., Leon-Leon, P., Lima, S., Mezones-Holguin, E., Monterrosa, A., Mostajo, D., Navarro, D., Ojeda, E., . . . Vallejo, M. S. (2012). Menopausal symptoms appear before the menopause and persist 5 years beyond: a detailed analysis of a multinational study. Climacteric, 15(6), 542-551. https://doi.org/10.3109/13697137.2012.658462
    5. Bromberger, J. T., Assmann, S. F., Avis, N. E., Schocken, M., Kravitz, H. M., & Cordal, A. (2003). Persistent mood symptoms in a multiethnic community cohort of pre- and perimenopausal women. American Journal of Epidemiology, 158(4), 347-356. https://doi.org/10.1093/aje/kwg155
    6. Bromberger, J. T., Meyer, P. M., Kravitz, H. M., Sommer, B., Cordal, A., Powell, L., Ganz, P. A., & Sutton-Tyrrell, K. (2001). Psychologic distress and natural menopause: a multiethnic community study. American Journal of Public Health, 91(9), 1435-1442. https://doi.org/10.2105/ajph.91.9.1435
    7. Bruce, R. A., Kusumi, F., Culver, B. H., & Butler, J. (1975). Cardiac limitation to maximal oxygen transport and changes in components after jogging across the US. Journal of Applied Physiology, 39(6), 958-964. https://doi.org/10.1152/jappl.1975.39.6.958
    8. Dahl, L. (2007). Effects of over-reaching on sleep heart rate.
    9. Davis, S. R., Lambrinoudaki, I., Lumsden, M., Mishra, G. D., Pal, L., Rees, M., Santoro, N., & Simoncini, T. (2015). Menopause. Nature Reviews Disease Primers, 1(1), 15004. https://doi.org/10.1038/nrdp.2015.4
    10. Deo, R. C. (2015). Machine Learning in Medicine. Circulation, 132(20), 1920-1930. https://doi.org/10.1161/circulationaha.115.001593
    11. El Khoudary, S. R., Greendale, G., Crawford, S. L., Avis, N. E., Brooks, M. M., Thurston, R. C., Karvonen-Gutierrez, C., Waetjen, L. E., & Matthews, K. (2019). The menopause transition and women's health at midlife: a progress report from the Study of Women's Health Across the Nation (SWAN). Menopause, 26(10), 1213-1227. https://doi.org/10.1097/GME.0000000000001424
    12. Faust, L., Feldman, K., Mattingly, S. M., Hachen, D., & V. Chawla, N. (2020). Deviations from normal bedtimes are associated with short-term increases in resting heart rate. Npj Digital Medicine, 3(1), 39. https://doi.org/10.1038/s41746-020-0250-6
    13. Fox, K., Borer, J. S., Camm, A. J., Danchin, N., Ferrari, R., Lopez Sendon, J. L., Steg, P. G., Tardif, J. C., Tavazzi, L., Tendera, M., & Heart Rate Working, G. (2007). Resting heart rate in cardiovascular disease. Journal of America College of Cardiology, 50(9), 823-830. https://doi.org/10.1016/j.jacc.2007.04.079
    14. Freeman, E. W., Sammel, M. D., Lin, H., & Nelson, D. B. (2006). Associations of hormones and menopausal status with depressed mood in women with no history of depression. Archives of General Psychiatry, 63(4), 375-382. https://doi.org/10.1001/archpsyc.63.4.375
    15. Freeman, E. W., Sammel, M. D., Liu, L., Gracia, C. R., Nelson, D. B., & Hollander, L. (2004). Hormones and menopausal status as predictors of depression in women in transition to menopause. Archives of General Psychiatry, 61(1), 62-70. https://doi.org/10.1001/archpsyc.61.1.62
    16. Gibson-Helm, M., Teede, H., & Vincent, A. (2014). Symptoms, health behavior and understanding of menopause therapy in women with premature menopause. Climacteric, 17(6), 666-673. https://doi.org/10.3109/13697137.2014.913284
    17. Harlow, S. D., Gass, M., Hall, J. E., Lobo, R., Maki, P., Rebar, R. W., Sherman, S., Sluss, P. M., & de Villiers, T. J. (2012). Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause, 19(4), 387-395. https://doi.org/10.1097/gme.0b013e31824d8f40
    18. Irwin, M., Thompson, J., Miller, C., Gillin, J. C., & Ziegler, M. (1999). Effects of Sleep and Sleep Deprivation on Catecholamine And Interleukin-2 Levels in Humans: Clinical Implications1. The Journal of Clinical Endocrinology and Metabolism, 84(6), 1979-1985. https://doi.org/10.1210/jcem.84.6.5788
    19. Jouven, X., Empana, J. P., Schwartz, P. J., Desnos, M., Courbon, D., & Ducimetière, P. (2005). Heart-rate profile during exercise as a predictor of sudden death. New England Journal of Medicine 352(19), 1951-1958. https://doi.org/10.1056/NEJMoa043012
    20. Kang, J., Ratamess, N. A., Faigenbaum, A. D., Bush, J. A., Finnerty, C., DiFiore, M., Garcia, A., & Beller, N. (2023). Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. The Journal of Strength and Conditioning Research, 37(10), 2080-2090. https://doi.org/10.1519/jsc.0000000000004497
    21. Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R news, 2(3), 18-22.
    22. Maartens, L. W., Knottnerus, J. A., & Pop, V. J. (2002). Menopausal transition and increased depressive symptomatology: a community based prospective study. Maturitas, 42(3), 195-200. https://doi.org/10.1016/s0378-5122(02)00038-5
    23. Magnus Thorsten, J., Poul, S., Hans Ole, H., & Finn, G. (2013). Elevated resting heart rate, physical fitness and all-cause mortality: a 16-year follow-up in the Copenhagen Male Study. Heart, 99(12), 882. https://doi.org/10.1136/heartjnl-2012-303375
    24. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 Competition: Results, findings, conclusion and way forward. International Journal of Forecasting, 34(4), 802-808. https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.06.001
    25. Miu, A. C., Heilman, R. M., & Miclea, M. (2009). Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Autonomic Neuroscience, 145(1), 99-103. https://doi.org/https://doi.org/10.1016/j.autneu.2008.11.010
    26. Muka, T., Oliver-Williams, C., Kunutsor, S., Laven, J. S., Fauser, B. C., Chowdhury, R., Kavousi, M., & Franco, O. H. (2016). Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. Journal of the American Medical Association Cardiol, 1(7), 767-776. https://doi.org/10.1001/jamacardio.2016.2415
    27. Olshansky, B., Ricci, F., & Fedorowski, A. (2022). Importance of resting heart rate. Trends in Cardiovascular Medicine. https://doi.org/https://doi.org/10.1016/j.tcm.2022.05.006
    28. Parente, R. C., Faerstein, E., Celeste, R. K., & Werneck, G. L. (2008). The relationship between smoking and age at the menopause: A systematic review. Maturitas, 61(4), 287-298. https://doi.org/10.1016/j.maturitas.2008.09.021
    29. Qi, Y. (2012). Random Forest for Bioinformatics. In C. Zhang & Y. Ma (Eds.), Ensemble Machine Learning: Methods and Applications 307-323. https://doi.org/10.1007/978-1-4419-9326-7_11
    30. Riggs, B. L., Khosla, S., & Melton, L. J., 3rd. (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocine Reviews, 23(3), 279-302. https://doi.org/10.1210/edrv.23.3.0465
    31. Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., Jackson, R. D., Beresford, S. A., Howard, B. V., Johnson, K. C., Kotchen, J. M., & Ockene, J. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. The Journal of the American Medical Association, 288(3), 321-333. https://doi.org/10.1001/jama.288.3.321
    32. Santoro, N. (2005). The menopausal transition. The American Journal of Medicine, 118 Suppl 12B, 8-13. https://doi.org/10.1016/j.amjmed.2005.09.008
    33. Schlagintweit, J., Laharnar, N., Glos, M., Zemann, M., Demin, A. V., Lederer, K., Penzel, T., & Fietze, I. (2023). Effects of sleep fragmentation and partial sleep restriction on heart rate variability during night. Scientific Reports, 13(1), 6202. https://doi.org/10.1038/s41598-023-33013-5
    34. Sforza, E., Chapotot, F., Lavoie, S., Roche, F., Pigeau, R., & Buguet, A. (2004). Heart rate activation during spontaneous arousals from sleep: effect of sleep deprivation. Clinical Neurophysiology, 115(11), 2442-2451. https://doi.org/https://doi.org/10.1016/j.clinph.2004.06.002
    35. Shetler, K., Marcus, R., Froelicher, V. F., Vora, S., Kalisetti, D., Prakash, M., Do, D., & Myers, J. (2001). Heart rate recovery: validation and methodologic issues. Journal of the American College of Cardiology, 38(7), 1980-1987. https://doi.org/10.1016/s0735-1097(01)01652-7
    36. Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. https://doi.org/https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
    37. Tobaldini, E., Nobili, L., Strada, S., Casali, K. R., Braghiroli, A., & Montano, N. (2013). Heart rate variability in normal and pathological sleep. Front Physiology, 4, 294. https://doi.org/10.3389/fphys.2013.00294
    38. Van Reeth, O., Sturis, J., Byrne, M. M., Blackman, J. D., L'Hermite-Balériaux, M., Leproult, R., Oliner, C., Refetoff, S., Turek, F. W., & Van Cauter, E. (1994). Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. The American Journal of Medicine, 266(6 Pt 1), E964-974. https://doi.org/10.1152/ajpendo.1994.266.6.E964
    39. Woods, N. F., & Mitchell, E. S. (2005). Symptoms during the perimenopause: prevalence, severity, trajectory, and significance in women's lives. The American Journal of Medicine, 118 Suppl 12B, 14-24. https://doi.org/10.1016/j.amjmed.2005.09.031
    40. Yamanaka, Y., Honma, K., Hashimoto, S., Takasu, N., Miyazaki, T., & Honma, S. (2006). Effects of physical exercise on human circadian rhythms. Sleep and Biological Rhythms, 4(3), 199-206.https://doi.org/10.1111/j.1479-8425.2006.00234.x
    41. Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168, 022022. https://doi.org/10.1088/1742-6596/1168/2/022022

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE