簡易檢索 / 詳目顯示

研究生: 黃敬恆
Huang, Ching-Hen
論文名稱: 藉由絕熱捷徑優化絕熱消跡應用於極化分光器
Shortcut to Adiabatic Elimination for Polarization Beam Splitter in Silicon Waveguides
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 絕熱消跡絕緣層覆矽極化分光器絕熱絕熱捷徑
外文關鍵詞: Adiabatic Elimination, silicon-on-insulator (SOI), Polarization Beam Splitter, adiabatic, Shortcuts to adiabaticity
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研究絕熱消跡(Adiabatic Elimination)並加入波導耦合的理論並藉由絕緣層覆矽(silicon-on-insulator, SOI)的方式來做出極化分光器(Polarization Beam Splitter)。首先會探討絕熱消跡之三長直波導狀況,再藉由耦合理論,來分析絕熱消跡之三長直波導的eigenmode,透過嚴謹的數學方式來做出極化分光的效果。
    將帶有絕熱消跡的極化分光的三長直波導做出來後,建立於絕熱消跡的數學上加入絕熱的過程做出絕熱彎曲波導來全面優化三長波導,使極化分光的頻寬及製程容忍度能夠得到有效的提升,另一方面也能夠透過此方式來提升絕熱消跡的效果。
    由於絕熱彎曲波導的元件長度較三長直波導長上許多,所以為了能夠縮短絕熱彎曲波導,但還是能夠達到絕熱的效果,可以藉由絕熱捷徑(Shortcuts to Adiabaticity)的方式,能夠使本來較長的絕熱彎曲波導縮短,但元件效果仍然接近絕熱的狀況。

    This thesis is devoted to the study of adiabatic elimination in optical waveguides and to design a polarization beam splitter based on the silicon-on-insulator (SOI) platform. Firstly, we discuss the conditions for adiabatic elimination in three waveguides, then we design polarization splitters based on shortcuts to adiabatic elimination.
    After the three straight waveguides system satisfying adiabatic elimination and polarization splitting are formed, the adiabatic process is added to the process of adiabatic elimination to fully optimize the three waveguides, so that the bandwidth of the polarization splitting and process tolerance can be effectively improved. In addition, it can also enhance the effect of adiabatic elimination.
    Since the length of the adiabatic three waveguides is much longer than the three straight waveguides, we use shortcuts to adiabaticity to shorten the adiabatic three waveguides. It can shorten the adiabatic three waveguides ,and the device performance is still close to the adiabatic device.

    中英文摘要 i 誌謝 xi 目錄 xii 圖片目錄 xiv 表格目錄 xvii Chapter 1 簡介 1 1.1 簡介 1 1.2 論文組織 4 Chapter 2 理論分析 5 2.1 Coupled Mode Theory(CMT) 5 2.1.1 同向耦合 10 2.2 絕熱消跡之三長直波導 12 2.3 絕熱消跡彎曲波導 17 2.3.1 絕熱(Adiabatic) 17 2.3.2 絕熱捷徑(Shortcuts to Adiabaticity) 19 Chapter 3 設計方法以及模擬結果 23 3.1 絕熱消跡之極化分光三長直波導 23 3.1.1 尋找波導尺規 23 3.1.2 絕熱消跡之極化分光三長直波導模擬 30 3.2 絕熱消跡之極化分光絕熱彎曲波導 34 3.2.1 耦合係數與波導間距關係 34 3.2.2 絕熱消跡之極化分光絕熱彎曲波導模擬 38 3.3 絕熱消跡之極化分光絕熱捷徑彎曲波導 44 3.4 絕熱消跡之極化分光波導之比較 50 3.4.1 TE模 51 3.4.2 TM模 53 3.5 極化分光效果比較 54 Chapter 4 結論與未來展望 56 4.1 結論 56 4.2 未來展望 56 Reference 57

    1.B. Razavi,' Microelectronics',pp.244-247(2014)
    2.C. Sun, M.T. Wade, Y.Lee, J.S. Orcutt, L.Alloatti, M.S. Georgas, A.S. Waterman, J.M. Shainline, R.R. Avizienis, S.Lin, B.R. Moss, R.Kumar, F.Pavanello, A.H. Atabaki, H.M. Cook, A.J. Ou, J.C. Leu, Y.-H.Chen, K.Asanović, R.J. Ram, M.A. Popović & V.M. Stojanović, 'Single-chip microprocessor that communicates directly using light',Nature 528, pp.534-538(2015).
    3.A.Crespi, R.Osellame, R.Ramponi, V.Giovannetti, R.Fazio, L.Sansoni, F. De Nicola, F.Sciarrino & P.Mataloni,'Anderson localization of entangled photons in an integrated quantum walk', Nature Photonic 7,pp.322-328(2018).
    4.J. Feng, R. Akimoto, and H. Zeng, 'Asymmetric silicon slot-waveguide-assisted polarizing beam splitter', IEEE Photonics Tech. Lett. 28(12), pp.1294–1297 (2016).
    5.D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, 'Planar-type polarization beam splitter based on a bridged silicon waveguide coupler', Opt. Express 23(2), pp.998–1004 (2015).
    6.Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, 'High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations', Opt. Express 24(6), pp.6586–6593 (2016).
    7.Y. Kim, M. H. Lee, Y. Kim, and K. H. Kim, 'High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide', Opt. Lett. 43, pp.3241–3244 (2018).
    8.D. Dai, 'Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides', J. Lightwave Technol. 30(20), pp.3281–3287 (2012).
    9.W. F. Jiang, 'Fabrication-tolerant polarization splitter and rotator based on slanted silicon waveguides', IEEE Photon.Technol. Lett., vol. 30, no. 7, pp.614–617 (2018).
    10.L. Socci, V. Sorianello, and M. Romagnoli, '300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking', Opt. Express 23, pp.19261(2015).
    11.H. Xu and Y. Shi,'Ultra-broadBand silicon polarization splitter-rotator based on the multi-mode waveguide', Opt. Express 25, pp.18485 (2017).
    12.C. Pan and B. M. A. Rahman,'High-sensitivity polarization-independent biochemical sensor based on silicon-on-insulator cross-slot waveguide', IEEE J. Sel. Top. Quantum Electron. 23, 4400108(2017)
    13.P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S.Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard,'BroadBand polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency', Opt.Express 23(17), 22553–22563 (2015).
    14.H. Xu and Y. Shi,'Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure', Opt. Lett., vol. 42, no. 24, 5202–5205(2017).
    15.X. Sun, H.-C. Liu, and A. Yariv, 'Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system', Opt. Lett. 34(3): pp.280-282(2009).
    16.R. G. Unanyan, L. P. Yatsenko, B. W. Shore, K.Bergmann, Opt. Commun. 139, 48 (1997); Xi Chen,I. Lizuain, A. Ruschhaupt, D. Gu´ery-Odelin, and J. G.Muga, Phys. Rev. Lett. 105, 123003 (2010); L. Giannelli and E. Arimondo,'Laser-induced adiabatic atomic reorientation with control of diabatic losses', Phys. Rev. A 89, 033419 (2014).
    17.X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and J. G. Muga,'Shortcut to Adiabatic Passage in Two- and Three-Level Atoms', Phys. Rev. Lett. 105, 123003(2010).
    18.T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng,'Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides', Opt. Express 20, 24085-24092 (2012).
    19.Paul K , Sarma A K, ' Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme', Phys. Rev. A 91 053406(2015)
    20.M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang,'Adiabatic elimination-based coupling control in densely packed subwavelength waveguides', Nat.Commun. 6, 7565(2015)
    21.H Oukraou, V Coda, AA Rangelov, G Montemezzani,'BroadBand photonic transport between waveguides by adiabatic elimination', Physical Review A (2018).
    22.M. Mrejen, H. Suchowski, N. Bachelard, Y. Wang and X. Zhang,'Low-loss and energy efficient modulation in silicon photonic waveguide by adiabatic elimination scheme', Applied Physics Letter 111, 033105 (2017).
    23.M. Mrejen, H. Suchowski, T. Hatakeyama, Y. Wang, and X. Zhang,'Experimental realization of two decoupled directional couplers in a subwavelength packing by adiabatic elimination', Nano Lett., vol. 15, no. 11, 7383–7387(2015).
    24.K. Okamoto,'Fundamentals of Optical Waveguides', Elsevier Science(2010).
    25.W.-P. Huang,'Coupled-mode theory for optical waveguides: an overview', Journal of the Optical Society of America A,11(3): pp. 963-983(1994).
    26.Y. C. Li, X. Chen,'Shortcut to adiabatic population transfer in quantum three-level systems: Effective two-level problems and feasible counterdiabatic driving', Phys. Rev. A ,vol. 94, no. 6,063411(2016).
    27.Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, S. L. Zhu,'Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms',ncomms12479(2016).
    28.S.-Y. Tseng,'Counterdiabatic mode-evolution based coupled-waveguide devices', Opt. Express 21, 21224–21235 (2013).

    無法下載圖示 校內:2024-06-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE