| 研究生: |
葉智全 Yeh, Zhi-Chang |
|---|---|
| 論文名稱: |
斜面和溝槽的準分子微細加工 Excimer Laser Micro-Machining of Oblique Surface and Grooves |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 溝槽 、斜面 、準分子雷射 、燒蝕 |
| 外文關鍵詞: | oblique surface, grooves, excimer laser, ablation |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究考慮KrF 準分子雷射對傾斜面上的高分子材料(PMMA、
PI)的燒蝕加工,及利用該雷射製作高深寬比孔與V-型槽。本研究發
展斜面雷射燒蝕的理論預測模式。模式部分包含發色基的雷射光吸
收、材料的能量轉換與燒蝕。實驗部分包含量測穿透燒蝕煙柱的光子
通量、燒蝕深度與觀察材料的加工特性。經由實驗與模擬的結果比
較,可知此理論模式是恰當的。研究結果顯示傾斜角度增大時,燒蝕
率會變小,但能量密度增大時,刻除率隨之增大。另外,我們發展利
用成像面偏離聚焦平面的加工方法,觀察其對製作高深寬比孔與V-
型溝槽所產生的影響。當成像面偏離聚焦平面時,會造成雷射光分布
的改變。偏離聚焦面愈遠時,雷射光束愈大且能量密度愈小。因此,
微鑽孔時加工出來的孔徑會增大。在加工V-型溝槽部分,材料偏離
聚焦面約150-350 m µ 時,數百發的雷射便能製作出V-型溝槽。而溝槽的寬度隨偏離距離增大而增大。
In this work, the ablation of polymeric materials (PI and PMMA)
exposed to an oblique laser beam and the micro-machining of V-grooves
and high-aspect-ratio holes in polymetric materials using KrF excimer
laser radiation are considered. Modeling and measurement methods for
the oblique ablation of polymeric materials are developed. The
modeling includes the absorption of laser light by chromophores, energy
conversion and material ablation. The experiment includes the
measurement of the light intensity through the ablation plume and the
ablation depth and the observation of the machining properties of the
polymers. The simulation and the measurement results are compared to
examine the model. The comparison shows that the modeling is valid.
The ablation rate decreases with the increase of the incident angle, but
increase with the increase of the fluence. Next, we develop a
micro-machining method based on the defocus of the laser beam. The
effects of this method on the micro-drilling and the micro-machining of
V-grooves are investigated. The defocus of the laser beam changes the
local distribution of the light over the micro-machined surface. When
the degree of the defocus increases, the beam size increases and its
intensity decreases. Thus, the size of the opening of the hole increases.
When the distance between the focus plane and the polymer surface is in
the range 150~350 m µ , a few hundreds pulses can generate a V-groove.
The width of the groove increases with the increase of the distance.
1. Flury, M., Benatmane, A., Gerard, P., Montgomery, P. C., Fontaine, J.,
Engel, T., Schunck, J. P., and Fogarassy, E., 2003, “Excimer Laser
Ablation Lithography Applied to the Fabrication of Reflective Diffractive
Optics,” Applied Surface Science, 208, pp. 238-244.
2. Lawes, R. A., Holmes, A. S., and Goodall, F. N., 1996. ”The Formation of
Mould for 3D Microstructures Using Excimer Laser Ablation,”
Microsystem Technologies, 3, pp. 17-19.
3. Manirambona, B., Baets, J. D., and Vervat, A., 2003, “Excimer Laser
Microvia-Technology in Multichip Modules,” Applied Surface Science,
208-209, pp. 171-176.
4. Sato, H., and Nishio, S., 2001, “Polymer Laser Photochemistry, Ablation,
Reconstruction, and Polymerization,” Journal of Photochemistry and
Photobiology C, 2, pp. 139-152.
5. Jabbur, N. S., and O’Brien, T. P., 2003, “Recurrence of Keratitis after
Excimer Laser Keratectomy,” Journal of Cataract Refract Surg, 29, pp.
198-201.
6. Hauge, E., Naroo, S. A. and Charman, W. N., 2001, “Poly(methyl
methacrylate) Model Study of Optical Surface Quality after Excimer
Laser Photorefractive Keratectectomy,” Journal of Cataract Refract Surg,
27, pp. 2026-2035.
7. Hildenhagen, J., Dickmann, K., 2003, “Excimer Laser for Fundamental
Studies in Cleaning Hewn Stone and Medival glass,” Journal of Cultura
Heritage, 4, pp. 118s-122s.
8. Ihlemann, J., and Rubahn, K., 1999, “Excimer Laser Micro Machining:
Fabrication and Applications of Dielectric Masks,” Applied Surface
Science, 154-155, pp. 578-592.
9. Braun, A., and Zimmer, K., 2002, “Diffractive Gray Scale Masks for
Excimer Laser Ablation,” Applied Surface Science, 186, pp. 200-205.
10. Rizvi, N. H., and Apte, P., 2002, “Development in Laser Micro-Machining
Techniques,” Journal of Materials Processing Technology, 127, pp.
206-210.
11. Lippert, T., Langford, S. C., Wokaun, A., Savas, Georgiou, and Dickinson,
J. T., 1999, “Analysis of Neutral Fragments from Ultraviolet Laser
Irradiation of a Photolabile Triazeno Polymer,” Journal of AppliedPhysics, 86, pp. 7116-7122.
12. Lippert, T., Webb, R. L., Langford, S. C., and Dickinson, J. T., 1999,
“Dopant Induced Ablation of Poly(methyl methacrylate) at 308 nm,”
Journal of Applied Physics, 85, pp. 1838-1847.
13. Tsunoda, K., Kumaki, D., Takahashi, T., Yajima, H,. Ishii, T., and Itoh, H.,
2002, “Characterization of Materials Ejected by Excimer Laser Ablation
of Hydrated Collagen Gel,” Applied Surface Science, 197-198, pp.
782-785.
14. Smausz, T., Kresz, N., and Hopp, B., 2001, “Target Morphology
Dependence of The Particulate Generation During Excimer Laser
Ablation of polytetrafluoroethlene,” Applied Surface Science, 177, pp.
66-72.
15. Taravella, M. J., Viega, J., Luiszer, F., Drexler, J., Blackburn, P., Hovland,P., and Repine, J. E., 2001, “Respirable Particles in the Excimer Laser
Pulme,” Journal of Cataract Refract Surg, 27, pp. 604-607.
16. Yung, K. C., and Zeng, D. W., 2001, “Laser Ablation of Upilex-S
Polyimide: Influence of Laser Wavelength on Chemical Structure and
Composition in Both Ablation Area and Halo,” Surface and CoatingsTechnology, 145, pp. 186-193.
17. D'Couto, G. C., and Babu, S. V., 1994, “Heat Transfer and Material
Removal in Pulsed Excimer-Laser-Induced Ablation: Pulsewidth
Dependence,” Journal of Applied Physics, 76, pp. 3052-3058.
18. Schmidt, H., Ihlemann, J., Wolff-Rottke, B., Luther, K., and Troe, J., 1998,
“Ultraviolet Laser Ablation of Polymers: Spot Size, Pulse Duration, and
Plume Attenuation Effects Explained,” Journal of Applied Physics, 83, pp.
5458-5468.
19. Schmidt, H., Ihlemann, J., Luther, K., and Troe, J., 1999, “Modeling of
Velocity and Surface Temperature of the Moving Interface During Laser
Ablation of Polyimide and Poly(methyl methacrylate),” Applied Surface
Science, 138, pp. 102-106.
20. Cain, Stephen R., Burns, F. C., and Otis, C. E., 1992, “On Single-Photon
Ultraviolet Ablation of Polymeric Materials,” Journal of Applied Physics,
71, pp. 4107-4117.
21. Cain, Stephen R., 1993, “A Photothermal Model for Polymer Ablation:
Chemical Modification,” Journal of Physics and Chemistry, 97, pp.
7572-7577.
22. 劉宏德, 2000, "準分子雷射與高分子交互作用時的熱傳與材料割除,"
國立成功大學機械工程學系碩士論文, 台南, 台灣.
23. 侯川嵩, 2001, "準分子雷射之聚合物燒蝕: 脈衝能量量測與煙柱衰減
效應,"國立成功大學機械工程學系碩士論文, 台南, 台灣.
24. 胡哲彰, 2002, "聚合物之準分子雷射燒蝕與微鑽孔, "國立成功大學機
械工程學系碩士論文, 台南, 台灣.
25. Paterson, C., Holmes, A. S., and Smith, R. W., 1999, “Excimer Laser
Ablation of Microstructures: A Numerical Model,” Journal of Applied
Physics, 83, pp. 5458-5468.
26. 郭晉良, 2002, "準分子雷射加工微型3D 立體結構, "國立成功大學機械
工程學系碩士論文, 台南, 台灣.
27. Nacessens, K., Ottevaere, H., Van Daele, P., and Bates, R., 2003,
“Flexible Fabrication of Microlenses in Polymer Layers with Excimer
Laser Ablation,” Applied Surface Science, 208-209, pp. 159-164.
28. Sterkenburgh, T., Franke, H., Becker, M., Garen, M., and Frank, W. F. X.,
1999, “Recording Grooves for Fiber-Chip Coupling in PMMA Using KrF
Excimer Laser Radiation: Experiment and Simulation,” Applied Physics
B , 68, pp. 1061-1067.
29. Lazare, S., Lopez, J., and Weisbuch, F., 1999, “High-Aspect-Ratio
Microdrilling in Polymeric Materials with Intense KrF Laser Ablation,”
Applied Physics A, 69, pp. S1-S6.
30. Tokarev, V. N., Lopez, J., and Lazare, S., 2000, “Modeling of
High-Aspect Ratio Microdrilling of Polymers with UV Laser Ablation,”
Applied Surface Science, 168, pp. 75-78.
31. Ishiguro, H., Yamamoto, H., Kikuchi, K.and Yamada, Y., 1998,
“Experimental Study of Ablation of Polymer Material Using Excimer
Laser(Influence of Irradiation Angle),” Heat Transfer 1998, Proceeding
of 11th IHTC, 5, pp. 23-28.
32. Li, M., Lu, Q. H., Yin, J., Qian, Y. and Wang, Z. G., 2002, “Effects of
Post-Thermal on Surface Mircostructures by Polarized Laser on
Polyimide Film,” Matericals Chemistry and Physics, 77, pp. 895-898.
33. Wong, W., Chan, K., Yeung, K. W., Tsang, Y. M., and Lau, K. S., 2000,
“Surface Structuring of Poly(ethyene terephthalate) Fibres with a UV
Excimer Laser and Low Temperature Plasma,” Journal of Materials
Processing Technology, 103, pp. 225-229.
34. Wong, W., Chan, K., Yeung, K. W., Tsang, Y. M., and Lau, K. S., 2003,
“Surface Structuring of Poly(ethyene terephthalate) by UV Excimer
Laser,” Journal of Materials Processing Technology, 132, pp. 114-118.
35. Bäuerle, D., 2000, “Laser Processing and Chemistry,” Springer, New
York.
36. Pettir, G. H. and Sauerbrey, R., 1993, “Plused Ultraviolet Laser Ablation,”
Applied Physics A, 77, pp. 895-898.