簡易檢索 / 詳目顯示

研究生: 葉智全
Yeh, Zhi-Chang
論文名稱: 斜面和溝槽的準分子微細加工
Excimer Laser Micro-Machining of Oblique Surface and Grooves
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 105
中文關鍵詞: 溝槽斜面準分子雷射燒蝕
外文關鍵詞: oblique surface, grooves, excimer laser, ablation
相關次數: 點閱:167下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究考慮KrF 準分子雷射對傾斜面上的高分子材料(PMMA、
    PI)的燒蝕加工,及利用該雷射製作高深寬比孔與V-型槽。本研究發
    展斜面雷射燒蝕的理論預測模式。模式部分包含發色基的雷射光吸
    收、材料的能量轉換與燒蝕。實驗部分包含量測穿透燒蝕煙柱的光子
    通量、燒蝕深度與觀察材料的加工特性。經由實驗與模擬的結果比
    較,可知此理論模式是恰當的。研究結果顯示傾斜角度增大時,燒蝕
    率會變小,但能量密度增大時,刻除率隨之增大。另外,我們發展利
    用成像面偏離聚焦平面的加工方法,觀察其對製作高深寬比孔與V-
    型溝槽所產生的影響。當成像面偏離聚焦平面時,會造成雷射光分布
    的改變。偏離聚焦面愈遠時,雷射光束愈大且能量密度愈小。因此,
    微鑽孔時加工出來的孔徑會增大。在加工V-型溝槽部分,材料偏離
    聚焦面約150-350 m µ 時,數百發的雷射便能製作出V-型溝槽。而溝槽的寬度隨偏離距離增大而增大。

    In this work, the ablation of polymeric materials (PI and PMMA)
    exposed to an oblique laser beam and the micro-machining of V-grooves
    and high-aspect-ratio holes in polymetric materials using KrF excimer
    laser radiation are considered. Modeling and measurement methods for
    the oblique ablation of polymeric materials are developed. The
    modeling includes the absorption of laser light by chromophores, energy
    conversion and material ablation. The experiment includes the
    measurement of the light intensity through the ablation plume and the
    ablation depth and the observation of the machining properties of the
    polymers. The simulation and the measurement results are compared to
    examine the model. The comparison shows that the modeling is valid.
    The ablation rate decreases with the increase of the incident angle, but
    increase with the increase of the fluence. Next, we develop a
    micro-machining method based on the defocus of the laser beam. The
    effects of this method on the micro-drilling and the micro-machining of
    V-grooves are investigated. The defocus of the laser beam changes the
    local distribution of the light over the micro-machined surface. When
    the degree of the defocus increases, the beam size increases and its
    intensity decreases. Thus, the size of the opening of the hole increases.
    When the distance between the focus plane and the polymer surface is in
    the range 150~350 m µ , a few hundreds pulses can generate a V-groove.
    The width of the groove increases with the increase of the distance.

    中文摘要……………………………………………………………………...i 英文摘要………………………………………………………………….…..ii 誌謝…………………………………………………………...……………..iii 目錄…………………………………………………………………….……..iv 表目錄………………………………………………………………….…..…vi 圖目錄…………………………………………………………...…….….…vii 符號說明………………………………………………………...……...… xiv 第一章緒論………………………………………………………………...1 1-1 研究背景、文獻回顧與目的.................................1 1-2 本文架構……………………..……………………………………...5 第二章傾斜面加工之實驗與量測……..…………………………….……6 2-1 準分子雷射加工機..…………..………………..…….……………6 2-2 材料特性………………………………..……………..….………..7 2-3 實驗方法………………………………………………..…………...7 2-4 燒蝕率之量測…………………………………………..…………...8 v 第三章傾斜面加工之預測模式與數值方法……………………………...9 3-1 預測模式………………………………………………………….....9 3-2 數值方法………………………………………………………….....17 第四章準分子雷射之微鑽孔與V-型槽製作……………………………...20 4-1 加工材料…………………………………………………..………...20 4-2 光罩規格……………………………………………………….…....20 4-3 加工方法及截面影像擷取…………………………………….…....21 第五章結果與討論………………………………………………………...24 5-1 準分子雷射對傾斜面加工之結果與討論……………………….....24 5-2 製作高深寬比孔之結果討論…………………………………….....27 5-3 利用偏離聚焦面製作V-型槽之結果與討論…………………….....30 第六章結論與展望………………………………..……………………...34 6-1 結論…………………………………………………………..….....34 6-2 展望…………………………………………………………..….....35 參考文獻……………………………………………………………..…….36 自述………………………………………………………………………...105

    1. Flury, M., Benatmane, A., Gerard, P., Montgomery, P. C., Fontaine, J.,
    Engel, T., Schunck, J. P., and Fogarassy, E., 2003, “Excimer Laser
    Ablation Lithography Applied to the Fabrication of Reflective Diffractive
    Optics,” Applied Surface Science, 208, pp. 238-244.
    2. Lawes, R. A., Holmes, A. S., and Goodall, F. N., 1996. ”The Formation of
    Mould for 3D Microstructures Using Excimer Laser Ablation,”
    Microsystem Technologies, 3, pp. 17-19.
    3. Manirambona, B., Baets, J. D., and Vervat, A., 2003, “Excimer Laser
    Microvia-Technology in Multichip Modules,” Applied Surface Science,
    208-209, pp. 171-176.
    4. Sato, H., and Nishio, S., 2001, “Polymer Laser Photochemistry, Ablation,
    Reconstruction, and Polymerization,” Journal of Photochemistry and
    Photobiology C, 2, pp. 139-152.
    5. Jabbur, N. S., and O’Brien, T. P., 2003, “Recurrence of Keratitis after
    Excimer Laser Keratectomy,” Journal of Cataract Refract Surg, 29, pp.
    198-201.
    6. Hauge, E., Naroo, S. A. and Charman, W. N., 2001, “Poly(methyl
    methacrylate) Model Study of Optical Surface Quality after Excimer
    Laser Photorefractive Keratectectomy,” Journal of Cataract Refract Surg,
    27, pp. 2026-2035.
    7. Hildenhagen, J., Dickmann, K., 2003, “Excimer Laser for Fundamental
    Studies in Cleaning Hewn Stone and Medival glass,” Journal of Cultura
    Heritage, 4, pp. 118s-122s.
    8. Ihlemann, J., and Rubahn, K., 1999, “Excimer Laser Micro Machining:
    Fabrication and Applications of Dielectric Masks,” Applied Surface
    Science, 154-155, pp. 578-592.
    9. Braun, A., and Zimmer, K., 2002, “Diffractive Gray Scale Masks for
    Excimer Laser Ablation,” Applied Surface Science, 186, pp. 200-205.
    10. Rizvi, N. H., and Apte, P., 2002, “Development in Laser Micro-Machining
    Techniques,” Journal of Materials Processing Technology, 127, pp.
    206-210.
    11. Lippert, T., Langford, S. C., Wokaun, A., Savas, Georgiou, and Dickinson,
    J. T., 1999, “Analysis of Neutral Fragments from Ultraviolet Laser
    Irradiation of a Photolabile Triazeno Polymer,” Journal of AppliedPhysics, 86, pp. 7116-7122.
    12. Lippert, T., Webb, R. L., Langford, S. C., and Dickinson, J. T., 1999,
    “Dopant Induced Ablation of Poly(methyl methacrylate) at 308 nm,”
    Journal of Applied Physics, 85, pp. 1838-1847.
    13. Tsunoda, K., Kumaki, D., Takahashi, T., Yajima, H,. Ishii, T., and Itoh, H.,
    2002, “Characterization of Materials Ejected by Excimer Laser Ablation
    of Hydrated Collagen Gel,” Applied Surface Science, 197-198, pp.
    782-785.
    14. Smausz, T., Kresz, N., and Hopp, B., 2001, “Target Morphology
    Dependence of The Particulate Generation During Excimer Laser
    Ablation of polytetrafluoroethlene,” Applied Surface Science, 177, pp.
    66-72.
    15. Taravella, M. J., Viega, J., Luiszer, F., Drexler, J., Blackburn, P., Hovland,P., and Repine, J. E., 2001, “Respirable Particles in the Excimer Laser
    Pulme,” Journal of Cataract Refract Surg, 27, pp. 604-607.
    16. Yung, K. C., and Zeng, D. W., 2001, “Laser Ablation of Upilex-S
    Polyimide: Influence of Laser Wavelength on Chemical Structure and
    Composition in Both Ablation Area and Halo,” Surface and CoatingsTechnology, 145, pp. 186-193.
    17. D'Couto, G. C., and Babu, S. V., 1994, “Heat Transfer and Material
    Removal in Pulsed Excimer-Laser-Induced Ablation: Pulsewidth
    Dependence,” Journal of Applied Physics, 76, pp. 3052-3058.
    18. Schmidt, H., Ihlemann, J., Wolff-Rottke, B., Luther, K., and Troe, J., 1998,
    “Ultraviolet Laser Ablation of Polymers: Spot Size, Pulse Duration, and
    Plume Attenuation Effects Explained,” Journal of Applied Physics, 83, pp.
    5458-5468.
    19. Schmidt, H., Ihlemann, J., Luther, K., and Troe, J., 1999, “Modeling of
    Velocity and Surface Temperature of the Moving Interface During Laser
    Ablation of Polyimide and Poly(methyl methacrylate),” Applied Surface
    Science, 138, pp. 102-106.
    20. Cain, Stephen R., Burns, F. C., and Otis, C. E., 1992, “On Single-Photon
    Ultraviolet Ablation of Polymeric Materials,” Journal of Applied Physics,
    71, pp. 4107-4117.
    21. Cain, Stephen R., 1993, “A Photothermal Model for Polymer Ablation:
    Chemical Modification,” Journal of Physics and Chemistry, 97, pp.
    7572-7577.
    22. 劉宏德, 2000, "準分子雷射與高分子交互作用時的熱傳與材料割除,"
    國立成功大學機械工程學系碩士論文, 台南, 台灣.
    23. 侯川嵩, 2001, "準分子雷射之聚合物燒蝕: 脈衝能量量測與煙柱衰減
    效應,"國立成功大學機械工程學系碩士論文, 台南, 台灣.
    24. 胡哲彰, 2002, "聚合物之準分子雷射燒蝕與微鑽孔, "國立成功大學機
    械工程學系碩士論文, 台南, 台灣.
    25. Paterson, C., Holmes, A. S., and Smith, R. W., 1999, “Excimer Laser
    Ablation of Microstructures: A Numerical Model,” Journal of Applied
    Physics, 83, pp. 5458-5468.
    26. 郭晉良, 2002, "準分子雷射加工微型3D 立體結構, "國立成功大學機械
    工程學系碩士論文, 台南, 台灣.
    27. Nacessens, K., Ottevaere, H., Van Daele, P., and Bates, R., 2003,
    “Flexible Fabrication of Microlenses in Polymer Layers with Excimer
    Laser Ablation,” Applied Surface Science, 208-209, pp. 159-164.
    28. Sterkenburgh, T., Franke, H., Becker, M., Garen, M., and Frank, W. F. X.,
    1999, “Recording Grooves for Fiber-Chip Coupling in PMMA Using KrF
    Excimer Laser Radiation: Experiment and Simulation,” Applied Physics
    B , 68, pp. 1061-1067.
    29. Lazare, S., Lopez, J., and Weisbuch, F., 1999, “High-Aspect-Ratio
    Microdrilling in Polymeric Materials with Intense KrF Laser Ablation,”
    Applied Physics A, 69, pp. S1-S6.
    30. Tokarev, V. N., Lopez, J., and Lazare, S., 2000, “Modeling of
    High-Aspect Ratio Microdrilling of Polymers with UV Laser Ablation,”
    Applied Surface Science, 168, pp. 75-78.
    31. Ishiguro, H., Yamamoto, H., Kikuchi, K.and Yamada, Y., 1998,
    “Experimental Study of Ablation of Polymer Material Using Excimer
    Laser(Influence of Irradiation Angle),” Heat Transfer 1998, Proceeding
    of 11th IHTC, 5, pp. 23-28.
    32. Li, M., Lu, Q. H., Yin, J., Qian, Y. and Wang, Z. G., 2002, “Effects of
    Post-Thermal on Surface Mircostructures by Polarized Laser on
    Polyimide Film,” Matericals Chemistry and Physics, 77, pp. 895-898.
    33. Wong, W., Chan, K., Yeung, K. W., Tsang, Y. M., and Lau, K. S., 2000,
    “Surface Structuring of Poly(ethyene terephthalate) Fibres with a UV
    Excimer Laser and Low Temperature Plasma,” Journal of Materials
    Processing Technology, 103, pp. 225-229.
    34. Wong, W., Chan, K., Yeung, K. W., Tsang, Y. M., and Lau, K. S., 2003,
    “Surface Structuring of Poly(ethyene terephthalate) by UV Excimer
    Laser,” Journal of Materials Processing Technology, 132, pp. 114-118.
    35. Bäuerle, D., 2000, “Laser Processing and Chemistry,” Springer, New
    York.
    36. Pettir, G. H. and Sauerbrey, R., 1993, “Plused Ultraviolet Laser Ablation,”
    Applied Physics A, 77, pp. 895-898.

    下載圖示
    2004-07-31公開
    QR CODE