簡易檢索 / 詳目顯示

研究生: 郭哲彰
Kuo, Che-Chang
論文名稱: 單層與雙層氫化石墨烯的電子特性
Electronic properties of hydrogenated monolayer and bilayer graphenes
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 29
中文關鍵詞: 單層與雙層氫化石墨烯石墨烯吸附氫原子第一原理計算
外文關鍵詞: Hydrogenated monolayer and bilayer graphenes, Hydrogen adsorbed graphene, First-principle calculations
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用第一原理計算來詳細探討單層與雙層氫化石墨烯,使其顯示出獨特的電子特性。當氫原子濃度高的時候,它們是帶有許多自由載子的金屬,除了具有巨大能隙之雙面接氫的單層氫化石墨烯以外。能帶結構的劇烈變化包含了狄拉克角錐(Dirac cone)的破壞、碳原子與氫原子主導的能帶在低能和中能區域被創造以及許多額外的band-edge states。
    態密度展現出許多的峰以及特殊肩膀結構,所有主要特色均源自於C-H與C-C鍵中軌域鍵結間的競爭或合作,藉由原子主導的能帶結構、電荷分佈以及軌域投影態密度來表明。

    Hydrogenated monolayer and bilayer graphenes exhibit unique electronic properties, being explored in detail using the first-principle calculations. For the high hydrogen concentration, they are metals with many free carriers except for the double-side functionalized monolayer graphene with a large energy gap. The dramatic changes in energy bands include the destruction of Dirac cone, the created (C,H)-dominated low- and middle-energy bands, and a lot of extra band-edge states.
    A plenty of special shoulders and peaks are revealed in density of states. All the main features come from the competition or cooperation among the orbital bondings in the C-C and C-H bonds, as indicated from the atom-dominated band structure, the charge distribution and the orbital-projected density of states.

    第一章 緒論 1 第二章 方法 3 第三章 結果與討論 4 第四章 總結 15 參考文獻 16

    1.Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
    2.Schedin F, et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater.6, 652-655 (2007).
    3.Geim A. K. Graphene: status and prospects. Science 324, 1530-1534 (2009).
    4.Berger C, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191-1196 (2006).
    5.Balandin A. A., et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008).
    6.Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).
    7.Liu H. T., Liu Y. Q., Zhu D. B. Chemical doping of graphene. J. Mater. Chem. 21, 3335-3345 (2011).
    8.Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752-1758 (2009).
    9.Joucken F., et al. Charge transfer and electronic doping in nitrogen-doped graphene. Sci.Rep. 5, 14564 (2015).
    10.Sutter P., Hybertsen M. S., Sadowski J. T., Sutter E. Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Lett. 9, 2654-2660 (2009).
    11.Lauffer P., et al. Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 77, 155426 (2008).
    12.Zhong X., Pandey R., Karna S. P. Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 50, 784-790 (2012).
    13.Tran N. T. T., Lin S. Y., Glukhova O. E., Lin M. F. Configuration-induced rich electronic properties of bilayer graphene. J. Phys. Chem. C 119, 10623-10630 (2015).
    14.Lai Y. H., Ho J. H., Chang C. P., Lin M. F. Magnetoelectronic properties of bilayer Bernal graphene. Phys. Rev. B 77, 085426 (2008).
    15.Lin, C. Y., Wu, J. Y., Ou, Y. J., Chiu, Y. H., Lin, M. F. Magneto-electronic properties of multilayer graphenes. Phys. Chem. Chem. Phys. 17, 26008-26035 (2015).
    16.Wong J. H., Wu B. R., Lin M. F. Strain effect on the electronic properties of single layer and bilayer graphene. J. Phys. Chem. C 116, 8271-8277 (2012).
    17.Pereira V. M., Neto A. H. C. Strain engineering of graphene’s electronic structure. Phys.Rev. Lett. 103, 046801 (2009).
    18.Sofo J. O., Chaudhari A. S., Barber G. D. Graphane: a two-dimensional hydrocarbon. Phys.Rev. B 75, 153401 (2007).
    19.Chandrachud P., et al. A systematic study of electronic structure from graphene to graphane. J. Phys. Condens. Matter 22, 465502 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE