| 研究生: |
劉佳瑋 Liu, Jia-Wei |
|---|---|
| 論文名稱: |
潮流渦輪發電機結構的設計與分析 Structural Design and Analysis of a Tidal Current Power Generation Turbine |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 結構設計 、ANSYS 、潮流渦輪發電機 、流固耦合 、結構分析 |
| 外文關鍵詞: | tidal current power generation turbine, finite element analysis, ANSYS, offshore structural analysis |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
眾多的海洋能源中,潮流能源為最適合台灣開發的海洋能源之一,如何高效率的擷取海洋中穩定的洋流帶來的能源固然重要,但是對於台灣而言,關於海潮流方面相關的結構設計皆處於開發階段,設計與建造一座安全的並且能夠承受多變的海象環境的結構更是一個重要的課題。
因此,本研究希望藉由使用有限元素分析軟體ANSYS,嘗試不同的模擬方法,試圖找出最有效率的方法來輔助潮流渦輪發電機結構的設計過程。分別使用流固耦合分析、靜態結構分析、離岸結構分析模組。考慮到海波浪為週期性的運動,計算結構中各材料的疲勞強度做為其設計標準,結構分析的von Mises應力結果不僅要低於其材料的降伏強度,更要低於其設計標準;最後,透過網格的收斂性分析,以確保分析結果的準確性。
分析的結果顯示在四支柱上的結構強度明顯不足,透過模態分析可以發現此結構缺乏對抗扭矩的設計,需要增加四支柱的直徑與厚度,以及加裝補強的結構,使整體結構的能夠更安全與穩定。未來會在組裝完成的結構上安裝感測器並設計一套監控系統,以測量實際結構的受力與變形情況。
Considerable effort is going into the development of green energy sources, including solar, hydraulic, wind, ocean, geothermal, hydrogen, and biomass energy to reduce the effects of greenhouse gas accumulation. The fact that Taiwan is an island surrounded by the open sea provides numerous opportunities for the development of energy from the oceans. Tidal currents provide the most stable form of ocean energy. Tidal impact turbines can be used to convert the kinetic energy of moving water into electrical energy.
In Taiwan, designing and constructing marine structures capable of withstanding environmental damage is more important than the efficiency of energy extration. In this paper, we developed an efficient method by which to model the strength of offshore structures using finite element analysis software (ANSYS). We configured a tidal generation unit with a pyramidal geometry. The proposed scheme begins with fluid/structure interaction analysis, followed by static structural analysis and then using the ANSYS plug-in, offshore structural analysis. We determined that it would be possible to simulate the stress in offshore structures under a wide range of environmental conditions. Calculated the design criteria for different materials for each element in the structure. Compared the analyses results and design criteria. Results revealed that von Mises stress in the columns exceeded the design criteria.
[1] 吳文騰, "台灣的能源概況," 科學發展月刊, Vol. 457, pp. 123-126, 2011.
[2] "再生能源科技重要結論," 行政院 2007年產業科技策略會議, 2007.
[3] 高瑞棋, "水流發電機之弧形柱垂直軸式渦輪裝置," Taiwan, 2013.
[4] Y. M. Dai, N. Gardiner, and W.-H. Lam, "CFD modelling strategy of a straight-bladed vertical axis marine current turbine," The Twentieth International Offshore and Polar Engineering Conference, 2010.
[5] T. Delorm, D. Zappala, and P. Tavner, "Tidal stream device reliability comparison models," Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 226, No. 1, pp. 6-17, 2012.
[6] R. Nicholls-Lee, S. Turnock, and S. Boyd, "A method for analysing fluid structure interactions on a horizontal axis tidal turbine," 2011.
[7] C.-H. Jo, D.-Y. Kim, Y.-H. Rho, K.-H. Lee, and C. Johnstone, "FSI analysis of deformation along offshore pile structure for tidal current power," Renewable energy, Vol. 54, pp. 248-252, 2013.
[8] D. Coiro, A. De Marco, F. Nicolosi, S. Melone, and F. Montella, "Dynamic behaviour of the patented kobold tidal current turbine: numerical and experimental aspects," Acta Polytechnica, Vol. 45, No. 3, 2005.
[9] Huang Hsing Pan, Po Chang Lee, Chuan Tsung Lee, and P. S. Lin, "New Waterwheel Blades for Power Generation in Kuroshio," International Structural Engineering and Construction Conference, pp. 978-987, 2013.
[10] F. d. O. Antonio, "Wave energy utilization: A review of the technologies," Renewable and sustainable energy reviews, Vol. 14, No. 3, pp. 899-918, 2010.
[11] Rafael Waters et al., "Experimental results from sea trials of an offshore wave energy system," Applied Physics Letters, Vol. 90, No. 3, p. 034105, 2007.
[12] A. d. O. Falcão, "The shoreline OWC wave power plant at the Azores," Fourth European Wave Energy Conference, pp. 4-6, 2000.
[13] L. A. Vega, "Ocean thermal energy conversion primer," Marine Technology Society Journal, Vol. 36, No. 4, pp. 25-35, 2002.
[14] W.-H. Chen, 綠色能源與永續發展(二版). 高立圖書, 2015.
[15] Y. L. Young, M. R. Motley, and R. W. Yeung, "Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines," Journal of Offshore Mechanics and Arctic Engineering, Vol. 132, No. 1, p. 011101, 2010.
[16] A. Bahaj, W. Batten, and G. McCann, "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable energy, Vol. 32, No. 15, pp. 2479-2490, 2007.
[17] L. Myers and A. Bahaj, "Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators," Ocean engineering, Vol. 37, No. 2-3, pp. 218-227, 2010.
[18] T. V. Nguyen, "A vortex model of the Darrieus turbine," Texas Tech University, 1978.
[19] M. Islam, D. S.-K. Ting, and A. Fartaj, "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Vol. 12, No. 4, pp. 1087-1109, 2008.
[20] B. Yang and X. Shu, "Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current," Ocean Engineering, Vol. 42, pp. 35-46, 2012.
[21] S. Lain and C. Osorio, "Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine," 2010.
[22] P. Chaviaropoulos and M. O. Hansen, "Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver," Journal of Fluids Engineering, Vol. 122, No. 2, pp. 330-336, 2000.
[23] J. V. Akwa, H. A. Vielmo, and A. P. Petry, "A review on the performance of Savonius wind turbines," Renewable and sustainable energy reviews, Vol. 16, No. 5, pp. 3054-3064, 2012.
[24] Y.-C. Li, "The Performance Comparisons of the Lift-type and Drag-type Wind Turbines," NCTU, 2013.
[25] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind energy explained: theory, design and application. John Wiley & Sons, 2010.
[26] H.-H. Lee, Finite Element Simulations with ANSYS Workbench 17. SDC publications, 2017.
[27] Y. Bazilevs, M. C. Hsu, J. Kiendl, R. Wüchner, and K. U. Bletzinger, "3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades," International Journal for Numerical Methods in Fluids, Vol. 65, No. 1‐3, pp. 236-253, 2011.
[28] M. Zaaijer, "Foundation modelling to assess dynamic behaviour of offshore wind turbines," Applied Ocean Research, Vol. 28, No. 1, pp. 45-57, 2006.