簡易檢索 / 詳目顯示

研究生: 林伯濃
Lin, Po-Nung
論文名稱: 血液透析廓清率與濃度擴散行為的數值模擬
Numerical simulation of clearance and concentration diffusion behavior in hemodialysis
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 血液透析計算流體力學有限元素法
外文關鍵詞: Hemodialysis, Computational Fluid Dynamics, Finite Element Method
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球血液透析療程需求逐年增加,現代社會非常需要製造具有有效縮短透析 時間且廉價的透析薄膜。為了優化透析成本和時間,需要深入分析透析器設計和工藝 參數對血液毒素(從小到大分子)廓清率(clearance rate)的影響。得益於數值分析和 現代高效能電腦計算的力量,吾人可以模擬透析器內部發生的傳輸現象,同時最小化 開發成本。在本文中,通過建立基於對流-擴散方程、計算流體力學(CFD)之二維軸對 稱孔隙擴散模型(PDM),使用有限元素分析軟體的求解器進行模擬。通過將模擬結 果與 Polyflux 210H 製造商公開的實驗數據進行比較,並進行驗證模型可靠性,通過 求解不同的模型方程來與調整設計參數,如:血液和透析液流量的大小和方向、纖維 的長度和直徑、孔徑以及纖維的內部結構等,以模擬這些參數變化如何影響血液毒素 的廓清率以及在不同的跨膜壓力下對纖維結構的影響,並找出最佳化的設計方案。

    In response to the increasing global demand for hemodialysis treatment, the modern society is in great need of manufacturing an inexpensive dialysis membrane that can effectively shorten the dialysis time. In order to optimize dialysis cost and time, in-depth analysis of the impact of dialyzer design and process parameters on the clearance rate of blood toxins (from small to large molecules) is required. Thanks to the power of numerical analysis and modern high-performance computer calculations, we can simulate the transport phenomena that occur inside the dialyzer while minimizing development costs. In this paper, a 2D axisymmetric pore-diffusion model (PDM) based on the convection-diffusion equation, computational fluid dynamics (CFD), is simulated using the solver of the finite element analysis software. By comparing the simulation results with the experimental data published by the Polyflux 210H manufacturer, the reliability of model was verified. Moreover, through solving and adjusting the design parameters, such as: blood and dialysate flow size and direction, fiber length and diameter, pore size, etc., to simulate the effects of these parameters on the clearance rate of blood toxins, the optimal design scheme can be achieved.

    中文摘要 I Extended Abstract II 目錄 X 表目錄 XIII 圖目錄 XV 符號說明 XIX 第一章 緒論 1 1-1 前言 1 1-2 簡介 3 1-2-1 腎臟 3 1-2-1-1 腎臟結構與功能 3 1-2-1-2 腎臟衰竭 5 1-2-2 血液透析 6 1-2-2-1 血液迴路 7 1-2-2-2 透析液迴路 10 1-2-2-3 透析器 11 1-2-2-4 Polyflux 210H 透析器 13 1-3 文獻回顧 15 1-3-1 早期血液透析設備開發簡史 15 1-3-2 血液透析的研究發展 16 1-4 研究動機與目的 21 1-5 本文架構 24 第二章 研究基礎理論 25 2-1 菲克定律 25 2-1-1 菲克第一定律 25 2-1-2 菲克第二定律 26 2-2 納維-斯托克方程式(Navier-Stokes equations) 28 2-3 廣義虎克定律(Hooke’s law) 30 第三章 數值模型建立 33 3-1 有限元素分析 33 3-2 數值模型建立 35 3-3 統御方程式與邊界條件 40 3-3-1 血液流動區間的統御方程式與邊界條件 40 3-3-2 透析液流動區間的統御方程式與邊界條件 41 3-4 溶質跨多層膜的轉移行為 42 3-5 網格建立與各項參數設置 44 3-5-1 各項參數設置 44 3-5-2 網格設置 48 3-6 模擬流程 51 第四章 結果分析與討論 53 4-1 模型輸出成果與驗證 53 4-1-1 模型輸出成果 53 4-1-2 模型驗證 59 4-2 液體流率對毒素清除效果的影響 61 4-2-1 改變血液流率對毒素清除效果的影響 61 4-2-2 改變透析液流率對毒素清除效果的影響 64 4-3 結構尺寸對毒素清除效果的影響 68 4-3-1 纖維長度對毒素清除效果的影響 68 4-3-2 纖維內徑對毒素清除效果的影響 71 4-3-3 內層薄膜孔徑對毒素清除效果的影響 74 4-3-4 內外層薄膜易位對毒素清除效果的影響 77 4-4 血液與透析液流向相同對毒素清除效果的影響 81 4-5 不同纖維數量對毒素清除效果的影響 85 4-6 改變薄膜結構對毒素清除效果的影響 89 4-6-1 薄膜內層增加鰭片結構對毒素清除效果的影響 89 4-6-2 薄膜內層增加溝槽結構對毒素清除效果的影響 92 第五章 結論與未來展望 97 5-1 結論 97 5-2 未來展望 99 參考文獻 100

    [1] Hedayat, A., Szpunar, J., Kumar, N. A. P. K., Peace, R., Elmoselhi, H., & Shoker, A. (2012). Morphological Characterization of the Polyflux 210H Hemodialysis Filter Pores. International Journal of Nephrology, Pages 1–6.
    [2] Takai, R., Kurimoto, R., Nakagawa, Y., Kotsuchibashi, Y., Namekawa, K., & Ebara, M. (2016). Towards a Rational Design of Zeolite-Polymer Composite Nanofibers for Efficient Adsorption of Creatinine. Journal of Nanomaterials, Pages 1–7.
    [3] Timothy, W., Meyer, M. D., & Thomas, H.(2007). Uremia. The New England Journal of Medicine, Volume 357, Pages 1316-1325.
    [4] Curtis, L.(2012). Understanding the Kidney’s Role in Blood Glucose Regulation. Am J Manag Care, Volume 18, Pages 11–16 .
    [5] Agapitov, A. V., & Haynes, W. G.(2002) .Role of Endothelin in Cardiovascular Disease. J Renin Angiotensin Aldosterone Syst, Volume 3, Issue 1, Pages 1-15,
    [6] Miyata, T., Oda, O., &Inagi, R. (1993).Beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest,Volume 92, Issue 3, Pages 1243-52.
    [7] Volanakis, J. E., & Narayana, S. V. (1996).Complement Factor D, a novel serine protease. Protein Sci., Volume 5, Issue 4, Pages 553-564.
    [8] Krieter, D. H., & Canaud, B. (2003) . High permeability of dialysis membranes: what is the limit of albumin loss? . Nephrology Dialysis Transplant, Volume 18, Issue 4, Pages 651-654.
    [9] Ikizler, T. A., Flakoll, P. J., Parker, R. A. & Hakim, R. M. (1994) . Amino acid and albumin loss during hemodialysis. Kidney International, Volume 46, Pages 830-837.
    [10] Benz, M. R., & Schaefer, F. (2012) . Technical Aspects of hemodialysis in Children. Pediatric Dialysis, Springer, Pages 287-289.
    [11] Said, N., Lau, W. J., Ho, Y. C., Lim, S. K., Zainol Abidin, M. N., &Ismail, A. F. (2021). A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes, Volume 11, Pages 767.
    [12] Gambro dialysatoren GmbH. (2020). Polyflux H. https://renalcare.baxter.com/products/polyflux-h
    [13] Kolff, W. J. (1965). First clinical experience with the artificial kidney. Ann Intern Med, Volume 62, Pages 608-619.
    [14] Quinton, W., Dillard, D., &Scribner, B. H. (1960). Cannulation of blood vessels for prolonged hemodialysis. Trans Am Soc ArtifIntern Organs, Volume 6, Pages 104-113.
    [15] Haviland, J. W. (1965). Experiences in establishing a community artificial kidney center. Trans Am Clin Climatol Assoc, Volume 77, Pages 125-129.
    [16] Scribner, B. H., Buri, R., &Caner, J. E. Z., et al. (1960). The treatment of chronic uremia by means of intermittent hemodialysis: A preliminary report. Trans Am Soc Artif Intern Organs, Volume 6, Pages 114-122.
    [17] Murray, J. S., Tu, W. H., &Albers, J. B., et al. (1962). A community hemodialysis center for the treatment of chronic uremia. Trans Am Soc ArtifIntern Organs, Volume 8, Pages 315-319.
    [18] Grimsrud, L., Cole, H., &Lehman, G. A., et al. (1964). A central system for the continuous preparation and distribution of hemodialysis fluid. Trans Am Soc Artif Intern Organs, Volume 10, Pages 107-109.
    [19] Blagg, C. K. (1996). A Brief History of Home Hemodialysis. Advances in Renal Replacement Therapy, Volume 3(2), Pages 99–105.
    [20] Popovich, R. P., Moncrief, J. W., &Dechard, J. B., et al. (1976). The definition of a novel portable/wearable equilibrium peritoneal dialysis technique. Trans Am Soc Artif Intern Organs, Volume 22, Pages 65.
    [21] Diaz-Buxo, J. A. (1989). Continuous cyclic peritoneal dialysis, in Nolph KD (ed): Peritoneal Dialysis (ed 3). Kluwer Academic Publishers, Dordrecht, Pages 169-173.
    [22] Uldall, R., Francouer, R., &Ouwendyk, M., et al. (1994). Simplified nocturnal horne hemodialysis (SNHHD):A new approach to renal replacement therapy (abstr). J Am Soc Nephro, Issue 5, Pages 428.
    [23] Innes, A., Farrell, A. M., Burden, R. P., Morgan, A. G. & Powell, R. J. (1994).
    Complement activation by cellulosic dialysis membranes. Journal of Clinical Pathology, Volume 47, Issue 2, Pages 155-158.
    [24] Gastaldello, K., Melot, C., Kahn, R. J., Vanherweghem, J. L., Vincent, J. L., & Tielemans, C. (2000). Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrology Dialysis Transplantation, Volume 15, Pages 224-230.
    [25] Hayama, M., Kohori, F., &Sakai, K. (2002). AFM observation of small surface pores of hollow-fiber dialysis membrane using highly sharpened probe. Journal of Membrane Science, Volume 197, Issues 1-2, Pages 243-249.
    [26] Borzou, S. R., Gholyaf, M., Zandiha, M., Amini, R., Goodarzi, M. T., &Torkaman, B. (2009). The effect of increasing blood flow rate on dialysis adequacy in hemodialysis patients. Saudi J Kidney Dis Transpl, Volume 20, Pages 639-642.
    [27] Yamamoto, K., Hayama, M., Matsuda, M., Yakutia, T., Fukuda, M., Miyawaki, T, & Sakai, K. (2007). Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. Journal of Membrane Science, Volume 287, Pages 88–93.
    [28] Islam, J., &Szpunar. (2013). Study of Dialyzer Membrane (Polyflux 210H) and Effects of Different Parameters on Dialysis Performance. Open Journal of Nephrology, Volume 03(03), Pages 161-167.
    [29] Amareswara-Prasad-Chunduru. (2020). Topological optimization of hollow fiber membranes toenhance hemodialyzer efficiency. SCOPUS Indexed Journal, Volume 10, Issue 3.
    [30] 國民健康署. (2022). 慢性病防治-腎臟病. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=217
    [31] USRDS. (2020). Annual Data Report 2020. https://adr.usrds.org/2020
    [32] Adolf Fick. (1885). Ueber Diffusion. Annalen der physic, Volume 170, Issue 1.
    [33] EI-Gamal, H. A., Awad, T. H., &Saber, E. (1996). Leakage from Labyrinth Seals Under Satationary and Rotating Conditions. Tribology International, Volume 29, No. 4, Pages. 291-297.
    [34] M. H. Sadd. (2014). Elasticity: theory, applications, and numerics (3. ed). Amsterdam ; Boston: Elsevier/AP, Academic Press is an imprint of Elsevier, Pages xvii, 582 Pages.
    [35] D. S. Chandrasekharaiah., &L. Debnath. (1994). Continuum Mechanics. Academic Press.
    [36] Bao, Y., Du, G. K., Chen, W. L., & Wang, Z. G. (2011). Storage method of FE equations and its application in numerical simulation of sheet metal forming. Engineering Plasticity and Its Applications. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics.
    [37] Gunther, J., Schmitz, P., Albasi, C., &Lafforgue, C. (2010). A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module. Journal of Membrane Science, Volume 348, Issues 1-2, Pages 277-286.
    [38] T. Yaqoob, M., Ahsan, A., Hussain., &I. Ahmad. (2020). Computational Fluid Dynamics (CFD) Modeling and Simulation of Flow Regulatory Mechanism in Artificial Kidney Using Finite Element Method. Membranes, Volume 10, No.7, Pages 139.
    [39] G. Kagramanov, V., Gurkin, &E. Farnosova. (2021). Physical and Mechanical Properties of Hollow Fiber Membranes and Technological Parameters of the Gas Separation Process. Membranes, Volume 11, No. 8, Pages 583.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE