簡易檢索 / 詳目顯示

研究生: 林佳樺
Lin, Chia-Hua
論文名稱: 奈米碳管探針端部強度之量子分子動力學研究
A Study on Stiffness of Cap of Carbon Nanotube Probe using Quantum Molecular Dynamics
指導教授: 翁政義
Weng, Cheng-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 71
中文關鍵詞: 量子分子動力學奈米碳管探針
外文關鍵詞: quantum molecular dynamics, carbon nanotube probe
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以量子分子動力學探討奈米碳管做為AFM探針頭,並以輕敲式的量測技術量測樣品表面時,在碳管端部所可能產生的變形機制及彈性係數。此彈性係數對於敲輕式來說是非常重要的,因為輕敲式工作原理即探針剛好敲到樣品,較不會損壞樣品表面。若輕敲時碳管未產生局部挫曲(Local buckling),則此彈性係數在解析度及量測樣品之剛性上,會有一定程度之影響。本文之模擬採用Tight-Binding 多體勢能,所探討的主要參數為碳管直徑。結果發現管徑小於8.2Å ,凹陷之臨界力呈線性上升;碳管直徑大於8.2Å 之後,平均以0.3nN 可使端部凹陷;碳管端部受力曲線斜率會隨著幾何結構的變化而變化;管徑大於10Å ,端部之彈性
    係數平均值約為0.38nN/Å 。最後提出量子分子動力學的瓶頸及可能改進的方向,作為今後努力的方針。

    We present a detailed investigation of the deformation mechanism and the spring constants of carbon nanotube probe for AFM tapping mode using
    Quantum Molecular Dynamics. The working principle of AFM tapping mode is the probe touch precisely to sample surface, less damage to sample surface than contact mode. This spring constants is significant when the probe does not occur local buckling during cap compression. The diameter of tube is discussed in this article. The simulation show that force which make the cap convex to concave is rise linear if diameters less than 8.2Å . On the other hand,
    the average value is 0.3 nN. The slope of force curve of cap vary with geometry of cap. If diameters greater than 10Å , average value of spring constant of cap of carbon nanotube probe is 0.38nN/Å independent of diameter of tube. Finally, we point out the hard of Quantum Molecular Dynamics and feasibility improve way for our future work.

    中文摘要.........................................I Abstract....................................... II 誌謝.......................................... III 目錄........................................... IV 表目錄.........................................VII 圖目錄....................................... VIII 符號說明....................................... XI 第一章緒論...................................... 1 1-1 前言........................................ 1 1-2 研究動機與目的.............................. 5 1-3 文獻回顧.................................... 7 1-3-1 分子動力學奈米碳管模擬文獻回顧............ 7 1-4 本文架構................................... 10 第二章量子分子動力學理論........................11 2-1 物理模型....................................11 2-2 勢能函數................................... 13 2-2-1 一般分子動力學........................... 13 2-2-2 Tight-binding 多體勢能................... 14 2-3 模擬流程圖................................. 23 第三章量子分子動力學數值模擬方法............... 24 3-1 模擬參數與無因次化......................... 24 3-2 設定初始條件............................... 26 3-2-1 Rescaling 方法........................... 27 3-3 運動方程式................................. 29 3-3-1 Gear 五階預測修正法...................... 29 3-3-2 Verlet 方法.............................. 32 3-3-3 Leap-Frog 方法........................... 32 3-4 截斷半徑法................................. 34 3-4-1 Verlet 表列法............................ 35 第四章模擬結果分析與討論....................... 40 4-1 碳管結構分析............................... 40 4-2 端部彈性係數分析........................... 44 第五章結論與建議............................... 64 5-1 結論....................................... 64 5-2 建議與未來展望............................. 65 參考文獻....................................... 66 作者........................................... 70 著作........................................... 71

    1. G. Binnig, C. F. Quate, and C. Gerber, ²Atomic Force Microscope², phys.
    2. 林鶴南, 李龍正, 劉克迅, 科儀新知, 17 (3) , 29 (1995).
    3. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley,
    "Nanotubes as nanoprobes in scanning probe microscopy", Nature 384, 147
    4. J. H. Hafner, C. L. Cheung, and C. M. Lieber, "Growth of nanotubes for
    probe microscopy tips", Nature 398, 761 (1999).
    5. C. L. Cheung, J. H. Hafner, and C. M. Lieber, "Carbon nanotube atomic
    force microscopy tips:Direct growth by chemical vapor deposition and
    application to high resolution imaging", Proc. Natl. Acad. Sci. USA 97, 3809
    6. J. H. Hafner, C. L. Cheung, and C. M. Lieber, "Direc growth of
    single-walled carbon nanotube scanning probe microscopy tips", J. Am. Chem.
    7. C. L. Cheung,J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber,
    "Growth and fabrication with single-walled carbon nanotube probe
    microscopy tips", Appl. Phys. Lett. 76, 3136 (2000).
    8. S. Iijima, Nature 354, 56 (1991).
    9. C. F. Cornwell and L.T. Wille, "Elastic Properties of Single-Walled Carbon
    Nanotubes in Compression", Solid State Comm. 101,555 (1997).
    10. J. A. Harrison and S. J. Stuart, "Properties of Capped Nanotubes When
    Used as SPM Tips", J. Phys. Chem. B 101, 9682 (1997).
    11. Y. Nan and L. Vincenzo, "Carbon nanotube caps as springs:Molecular
    dynamics simulations", Phys. Rev. B 58 (19), 12649 (1998).
    12. G. Ajay, H. Jie and B. S. Susan, "Interactions of Carbon-Nanotube
    Proximal Probe Tips with Diamond and Graphene", Phys. Rev. Lett. 81 (11),
    2260 (1998).
    13. J. C. Slater, and G. F. Koster, "Simplified LCAO method for periodic
    potential problem" , Physical Review Vol. 94 No. 6 1498-1524 (1954).
    14. C. Kittle, Introduction to Solid State Physics, John Wiley and Sons, New
    York, (1996).
    15. 劉東昇編譯, 化學量子力學,徐氏基金會出版,台北,1992。
    16. 江元生, 結構化學,五南圖書出版,台北,1998。
    17. L. Colombo, "A source code for tight-binding molecular dynamics
    simulation", Computational Materials Science Vol. 12 278-287 (1998).
    18. J. Z. H. Zhang, Theory and Application of Quantum Molecular Dynamics,
    World Scientific Publishing Company, Singapore, (1999).
    19. 江逢霖, 量子化學原理,復旦大學出版社,上海,1990。
    20. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, "A transferable
    tight-binding potential for carbon", J. Phys.: Condens. Matter Vol. 4
    6047-6054 (1992).
    21. I. Kwon, R. Biswas, C. Z. Wang, K. M. Ho, and M. Soukoulis,
    "Transferable tight-binding models for silicon", Physical Review B Vol. 49
    No. 11 7242-7250 (1994).
    22. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of
    Carbon Nanotubes , Imperial College Press , (1998).
    23. M. S. Dresselhaus , G. Dresselhaus , P. C. Eklund , Science of Fullerenes
    and Carbon Nanotubes , Academic Press , (1996).
    24. M. P. Allen et al., Computer Simulation in Chemical Physics, SeriesC:
    Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht,
    (1992).
    25. M. Meyer et al., Computer Simulation in Material Science, Series E:
    Applied Sciences Vol. 205, Kluwer Academic , Dordrecht, (1991).
    26. S. Erkoc, "Annual Reviews of Computational IX", World Scientific
    Publishing Company, Singapore, 1-103 (2001).
    27. H. Rafii-Tabar, "Modelling the nano-scale phenomena in condensed
    matter physics via computer-Based numerical simulations", Physics Reports
    Vol. 325 239-310 (2000).
    28. R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces,
    Cambridge University Press, London , (1997).
    29. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,
    Intermolecular Forces, Oxford University Press, London , (1987).
    30. P. L. Huyskens et al., Intermolecular Forces , Springer-Verlag, Berlin ,
    (1991).
    31. M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces
    between Molecules, Oxford University Press, London, (1986).
    32. R. P. Gupta, "Lattice relaxation at a metal surface", Physical Review B
    Vol. 23 No. 12 6265-6270 (1981).
    33. J. M. Haile, Molecular dynamics simulation:elementary methods, A
    Wiley-interscience publication, New York (1992).
    34. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge
    University Press, London, (1997).
    35. J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, (1990).
    36. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford
    Science, London, (1991).
    37. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic
    Press, San Diego, (1996).
    38. D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin,
    (1990).
    39. G. Galli, R. M. Martin, R. Car and M. Parrinello, "Carbon:The nature of
    the liquid state", Phys. Rev. Lett. 63, 988, (1989).
    40. M. S. Dresselhaus, G. Dresselhaus, R. Saito, "Physics of carbon
    nanotubes", Carbon 33, 883-891 (1995).
    41. L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, "The
    smallest carbon nanotube", Nature 408, 50 (2000).

    下載圖示 校內:立即公開
    校外:2003-07-23公開
    QR CODE