簡易檢索 / 詳目顯示

研究生: 林繼謙
Lin, Chi-Chien
論文名稱: 岸基震盪水柱式波浪發電系統之設計
Design of a Wave Energy System Using Onshore Oscillating Water Column
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 183
中文關鍵詞: 波浪發電發電機再生能源震盪水柱
外文關鍵詞: Wave Energy, Generator, Renewable Energy, Oscillating Water Column
相關次數: 點閱:95下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對台東成功海域作為未來岸基震盪水柱式波浪發電系統預定廠址,並依據當地近岸波浪觀測資料與福祿數理論,將實驗規格等效縮小至本系造波水槽以完成初期測試。本文採用雙沉箱氣室結構並搭配使用兩級串接Savonius葉片,使流經葉片之合成風速較為穩定,以降低傳統震盪水柱式發電系統葉片轉速變化劇烈情形,並降低後端控制電路成本、提高發電機輸出功率品質。不同於一般此類波浪發電機構,本文採取平行於波浪前進方向之架構,並將沉箱氣室尺寸做最佳化設計,使波浪通過沉箱結構時可較穩定,其衰減量較小,亦即代表系統發電品質較為穩定,發電容量可以提升。本文依據水深、波浪週期與波浪長度作為沉箱尺寸最佳化計算參數,發電機規格則依據沉箱施予葉片流速、功率與葉片性能參數完成其整合設計。本文所設計之波浪發電系統,經實驗測試驗證其效能符合預期。

    This thesis investigates the feasibility of applying oscillating water column (OWC) wave energy system to the onshore area in Taitung, Taiwan. A laboratory scale prototype of the OWC wave energy system is built based on the surveyed wave data at the target site. The prototype is scaled down using the Froude number theory for equivalence to the real site condition. The OWC is designed to have two chambers and two cascaded Savonius turbines, each of them being used for one chamber of the OWC. This configuration helps to stabilize the air flow passing the turbines so that the rotational speed the the turbines can be more steady than that with single chamber. Consequently, the cost on power electronics can be reduced and the quality of the power output can be maintained. The designed side-mounted OWC, differing from conventional systems, is structurally parallel to the propagation of the waves and allows the wave to penetrate the OWC. This will enhance the conversion rate for transferring wave energy to the chamber air, and thus the turbine. The OWC and the permanent-magnet generator are designed in a systematic manner for better system efficiency. The prototype is tested for performance validation.

    摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號表 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 本文架構 3 第二章 文獻回顧 5 2.1 國內波浪潛能分析與可開發廠址 5 2.2 國外波浪發電發展現況與遭遇問題及分析 8 2.3 波浪行為文獻回顧 16 2.4 葉片特性、最大功率追蹤與定功率控制法則 18 2.4.1 葉片特性概述 18 2.4.2 葉片功率曲線規劃 20 2.4.3 最大功率追蹤控制法則 21 2.4.4 定功率控制法則 23 2.5 發電機文獻探討 25 第三章 岸基震盪水柱式波浪發電系統組成 27 3.1 發電系統與功率流關係 27 3.2 波浪能量組成 29 3.2.1 問題描述 29 3.2.2 波浪能量探討 30 3.2.3 台灣波浪能量組成參數 33 3.3 沉箱氣室與波浪環境關係分析 34 3.3.1 波浪行為分析基本假設 34 3.3.2 波浪長度估算 35 3.3.3 沉箱外部與內部波浪運動方程式 35 3.3.4 沉箱施予葉片能量估算 36 3.3.5 沉箱氣室可最佳化設計參數 37 3.4 葉片分析 40 3.4.1 葉片基本參數 40 3.4.2 葉片作動原理 42 3.4.3 葉片曲線與其輸出功率曲線關係 48 3.5 葉片與發電機匹配分析 50 3.5.1 葉片與發電機輸出入特性曲線 50 3.5.2 葉片與發電機輸出特性與匹配分析 53 3.6 發電機設計分析 57 3.6.1 發電機特性定義 57 3.6.2 發電機系統架構 58 3.6.3 發電機磁路分析 59 3.6.4 發電機最大氣隙磁通密度推導 61 3.6.5 磁通鏈與感應電動勢分析 65 3.6.6 繞組設計 68第四章 沉箱規格、葉片量測與發電機設計 71 4.1 環境參數與實驗環境匹配 71 4.1.1 福祿數相似理論 71 4.1.2 實驗參數縮尺比例 73 4.1.3 深、淺水波定義與相關理論邊界條件 74 4.2 沉箱氣室設計與施予葉片能量估算 77 4.2.1 沉箱設計參數定義 77 4.2.2 沉箱設計規格與流體功率估算 84 4.3 葉片特性曲線 89 4.3.1 葉片特性曲線量測流程 89 4.3.2 葉片輸出功率曲線量測 93 4.3.3 葉片特性曲線繪製 94 4.4 二極體三相全波整流對發電機影響 95 4.4.1 電感為零之理想電路 95 4.4.2 電感不為零對電流換向影響 98 4.4.3 二極體三相全波整流之直流等效電路101 4.5 發電機設計 103 4.5.1 發電機規格制定依據 104 4.5.2 發電機規格制定 105 4.5.3 發電機槽極配考量與永磁材料選用 107 4.5.4 發電機主要尺寸制定 109 4.5.5 磁路設計 111 4.5.6 電氣設計與絕緣等級 118 4.5.7 磁路模擬驗證 126 第五章 實驗結果與分析討論 127 5.1 沉箱實體與震盪水柱、出口風速性能量測 127 5.1.1 沉箱實體圖與波高計位置 127 5.1.2 波高計輸出特性試驗 128 5.1.3 震盪水柱與出口流速性能量測 129 5.2 發電機測試結果與葉片匹配分析 134 5.2.1 發電機測試結果 134 5.2.2 發電機內部參數與葉片匹配分析 136 5.3 整體實驗結果與分析討論 137 第六章 結論與建議 142 參考文獻 150 附錄一 各國波浪發電簡介 156 附錄二 (A) 解單位波長波寬位能積分式 160 (B) 解單位波長波寬動能積分式 161 附錄三 沉箱水柱底部壓力推導 163

    [1] A. Clement, P. McCullen, A. Falcao, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M. T. Pontes, P. Schild, B. O. Sjostrom, H. C. Sorensenaan and T. Thorpe, “Wave Energy in Europe: current status and perspectives”, Renewable and Sustainable Energy Reviews vol. 6, Elsevier Science Publishers, pp 405-431, 2002.

    [2] A. Hiramoto, “The Theoretical analysis of an air turbine generation system”, Proceedings Wave and Tidal Energy International Symposium, vol 1. pp 73-84, Canterbury, England, 27-29 Sept. 1978.

    [3] A. J. G. Westlake, J. R. Bumby and E. Spooner, “Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to wind turbine applications”, IEE Proceedings Electric Power Applications, vol. 143, no. 3, pp. 269–280, May 1996.

    [4] A. Mirecki, X. Roboam and F. Richardeau, “Architecture complexity and energy efficiency of small wind turbines”, IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 660 – 670, Feb. 2007.

    [5] A. D. Hansen etals, “Overall control strategy of variable speed doubly-fed induction generator wind turbine”, Proceedings Nordic Wind Power Conference, 1-2 March 2004.

    [6] B. J. Chalmers, W. Wu and E. Spooner, “An axial-flux permanent-magnet generator for a gearless wind energy system”, IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251–257, Jun. 1999.

    [7] C. C. Lin, D. G. Dorrell and M. F. Hsieh, “A Small Segmented Oscillating Water Column Using a Savonius Rotor Turbine”, International Conference on Sustainable Energy Technologies, ICSET 2008, Singapore, 2008.

    [8] D. G. Dorrell, “Design Requirement for Brushless Permanent Magnet Generators for Use in Small Renewable Energy Systems”, Proceedings of IEEE Industrial Electronics Society Annual Meeting, IECON 2007, Taiwan, Nov. 2007.

    [9] D. G. Dorrell, “Permanent Magnet Generators for Renewable Energy Devices with Wide Speed Range and Pulsating Power Delivery”, International Forum on Systems Mechatronics, IFSM 2007, Taiwan, Dec. 2007.

    [10] D. G. Dorrell and M. F. Hsieh, “Performance of Wells Turbines for Use in Small-Scale Oscillating Water Columns”, International Society of Offshore and Polar Engineering Conference, ISOPE 2008, Vancouver, July 2008.

    [11] D. G. Dorrell, M. F. Hsieh and W. Fillet, “Segmented small oscillating water columns using in-line Savonius rotors”, International Society of Offshore and Polar Engineering Conference, ISOPE 2007, Lisbon, July 2007.

    [12] D. G. Dorrell and W. Fillet, “Investigation of a Small-Scale Segmented Oscillating Water Column Utilizing a Savonius Rotor Turbine”, International Conference on Energy and Environment, ICEE 2006, Kuching, Sarawak, Malaysia, 28-30 August 2006.

    [13] D. Hanselman, Brushless Permanent Magnet Motor Design. The Writers’ collective, Cranston, Rhode Island, 2003.

    [14] E. Muljadi, C. P. Butterfield and Y. H. Wan, “Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications”, IEEE Transactions on Industrial Applications, vol. 35, no. 4, pp. 831–836, Jul.-Aug. 1999

    [15] E. Spooner and A. C. Williamson, “Direct coupled, permanent magnet generators for wind turbine applications”, IEE Proceedings Electric Power Applications, vol. 143, no. 1, pp. 1–8, Jan. 1996.

    [16] E. Spooner, A. C. Williamson and G. Catto, “Modular design of permanent-magnet generators for wind turbines”, IEE Proceedings Electric Power Applications, vol. 143, no. 5, pp. 388–395, Sep. 1996.

    [17] F. A. Farret, L. L. Pfitscher and D. P. Bernardon, “An heuristic algorithm for sensorless power maximization applied to small asynchronous wind turbo generators”, IEE Proceedings International Symposium, vol. 1, no. 4-8, pp. 179-184, Dec. 2000.

    [18] O. Gal, S. N. Bijan etals, “Use of impedance models in permanent magnet synchronous generator design”, International Conference on Electrical Machines and Systems, ICEMS 2003, Nov. 2003.

    [19] J. Chen, C. V. Nayar and L. Xu, “Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines”, IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3802–3809, Sep. 2000.

    [20] J. R. Halliday and D. G. Dorrell, “Review of Wave Energy Resource and Wave Generator Developments in the UK and the Rest of the World”, IASTED EuroPES Conference, Rhodes, Greece, 28-30 June 2004.

    [21] JSOL Corporation, JMAG Studio Version 9.1 user reference, 2009.

    [22] K. J. Binnsand and D. W. Shimmin, “Relationship between rated torque and size of permanent magnet machines”, IEE Proceedings Electric Power Applications, vol. 143, no. 6, pp. 417–422, Nov. 1996.

    [23] L. Soderlund and J. T. Eriksson, “A permanent-magnet generator for wind power applications”, IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 2389–2392, Jul. 1996.

    [24] M. A. Khan and P. Pillay, “Design of a PM wind generator, optimised for energy capture over a wide operating range”, International Conference on Electric Machines and Drives, ICEMD 2005, May 2005.

    [25] M. C. Percival, P. S. Leung and P. K. Datta, “The development of a vertical turbine for domestic electricity generation”, European Wind Energy Conference, London, 22-25 Nov. 2004.

    [26] M. E. McCormick, Ocean Energy conversion, John Wiley & Sons Publishers, New York, 1981.

    [27] M. J. Tucker and E. G. Pitt, Waves in Ocean Engineering, Elsevier Publishers, Ocean Engineering Series, 2001.

    [28] P. Boccotti, “Wave mechanics for ocean engineering”, Elsevier Oceanography Series, pp. 1–495, Amsterdam, 2000.

    [29] Q. Wang and L. Chang, “An independent maximum power extraction strategy for wind energy conversion systems”, IEEE Proceedings Electrical and Computer Engineering, pp. 1142-1147, May 1999.

    [30] R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system”, IEEE Transactions on Energy Conversion, vol. 18, no.1, pp.163-168, Mar. 2003.

    [31] R. Shaw, Wave Energy: A design challenge, Ellis Horwood Publishers, 1982.

    [32] S. Huang, J. Luo, F. Leonardi and T. Lipo, “A comparison of power density for axial flux machines based on general purpose sizing equations”, IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 185–191, Jun. 1999.

    [33] T. J. E. Miller, Brushless Permanent Magnet and Reluctance Motor Drive. New York:Oxford University Press, 1989.

    [34] T. J. T. Whittaker etals, “Identification of non-linear flow characteristics of LIMPET shoreline OWC”, International Offshore and Polar Engineering Conference, Kyushu, Japan, 2002.

    [35] T. Nakamura, S. Morimoto, M. Sanada and Y. Takeda, “Optimum control of IPMSG for wind generation system”, IEEE Proceedings Power Conversion, vol. 3, no. 2-5, pp. 1435-1440, Apr. 2002.

    [36] T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita and H. Sekine, “Output power leveling of wind turbine generator for all operating regions by pitch angle control”, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 467-475, Jun. 2006.

    [37] T. Setoguchi and M. Takao, “Current status of self rectifying air turbines for wave energy conversion”, Energy Conversion and Management, vol. 47, pp. 2382-2396, 2006.

    [38] T. Setoguchi, S. Santhakumar, M. Takao, T. H. Kim and K. Kaneko, “Effect of guide vane shape on the performance of a Wells turbine”, Renewable energy, July 2000.

    [39] T. Lindh etals, “Permanent Magnet Generator Designing Guidelines”, Power Engineering, Energy and Electrical Drives, POWERENG 2007, Portugal, April 2007.

    [40] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis and I. Batarseh “DSP-based multiple peak power tracking for expandable power system”, IEEE Applied Power Electronics Conference, vol. 1, no. 9-13, pp. 525-530, Feb. 2003.

    [41] X. Cui, A. Binder and E. Schlemmer, “Straight-Flow Permanent Magnet Synchronous Generator Design for Small Hydro Power Plants”, International Conference on Clean Electrical Power, ICCEP 2007, May 2007.

    [42] Y. Chen, P. Pillay and A. Khan, “PM wind generator topologies”, IEEE Transactions on Industrial Applications, vol. 41, no. 6, pp. 1619 – 1626, 2005.

    [43] 工業技術研究院,我國海域能源高潛能區之評估及利用,經濟部能源科技研究報告-95年度執行報告,210頁,2007。

    [44] 工業技術研究院,我國海域能源蘊藏量分析技術之建立及開發方向評估,經濟部能源科技研究報告-94年度執行報告,135頁,2006。

    [45] 工業技術研究院,風力示範推廣計畫,經濟部能源科技研究報告-91年度執行報告,78頁,2002。

    [46] 工業技術研究院,風力機關鍵元件開發計畫,經濟部能源科技研究報告-95年度執行報告,250頁,2006。

    [47] 中華民國物理協會物理雙月刊,淺談我國海洋能源之開發前景,2007。

    [48] 江炫彰編譯,電力電子學,全華出版社,1995。

    [49] 李奇錄,可變繞組發電機應用於海流發電系統之研究,國立成功大學系統及船舶機電工程學系碩士論文,2008。

    [50] 李昇泰,箱網養殖浮式平台之實驗研究─波浪能量轉換分析,國立中山大學海洋環境及工程學系碩士論文,2006。

    [51] 金屬工業研究發展中心,風力發電月刊-直立式風機簡介,2005。

    [52] 金屬工業研究發展中心,風力機葉片數目對性能的影響,2006。

    [53] 茆尚勳,直驅式跑步機用直流無刷馬達之設計,國立成功大學機械工程學系碩士論文,2002。

    [54] 許裕昇,新型推進器馬達之磁路分析與設計,國立成功大學系統及船舶機電工程學系碩士論文,2005。

    [55] 陳雙穩,永磁無刷馬達之繞線結構對性能影響之研究,國立成功大學機械工程學系碩士論文,2001。

    [56] 黃國治、傅豐禮,中小旋轉電機設計手冊,中國電力出版社,2007。

    [57] 新高能源科技有限公司,垂直軸風力發電系統簡報,2006。

    [58] 鄭敏良,浮式結構物應用於波浪發電研究,國立中山大學海洋環境及工程學系碩士論文,2006。

    [59] 蔡逸峰,小型風力發電機葉片設計,馬達電子報,第229期,2007。

    [60] 鍾珍,國內海洋能利用規劃現況,太陽能及新能源學刊,第八卷第二期,2003。

    下載圖示 校內:2011-09-01公開
    校外:2011-09-01公開
    QR CODE