| 研究生: |
茆玉麟 Mau, Yu-Lin |
|---|---|
| 論文名稱: |
利用複合性指標對重複事件和終點事件臨床試驗進行依反應變數調整隨機化的方法研究 Response-Adaptive Randomization Procedure for Recurrent Events and Terminal Event Data with a Composite Endpoint |
| 指導教授: |
蘇佩芳
Su, Pei-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 分配規則 、平衡隨機分派 、雙重自適應有偏硬幣設計 、Fisher 信息矩陣 |
| 外文關鍵詞: | Allocation rule, Balanced randomization, Doubly adaptive biased coin design, Fisher information matrix |
| 相關次數: | 點閱:101 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床試驗或觀察性研究中,重複事件和終點事件數據是常見的。為了評估治療對這兩種事件的影響,通常使用複合性指標作為評估標準。在分析重複事件和終點事件數據時,通常採用聯合脆弱性模型來進行分析。在這項研究中,目標是基於聯合脆弱性模型開發基於目標的自適應隨機化策略,使用複合性指標作為評估標準。我們討論了平衡設計和反應自適應隨機化。平衡設計通常被使用,而反應自適應隨機化的分配方法可以讓更多受試者接受更有效的治療,這是一種理想和道德的方法。根據結果顯示,提出的方法在使用複合性指標時相對於平衡設計可以減少接受次優治療的試驗參與者人數,同時實現所需的分配目標。還提供了一個用於計算樣本大小和分配機率的 R Shiny 應用介面。最後,應用兩項臨床試驗用於所提出的方法。
In clinical trials or observational studies, recurrent events and terminal event data are common. To evaluate the effect of treatment on both types of events, composite endpoints are often used as evaluation criteria. For the analysis of recurrent events and terminal event data, a joint frailty model is typically employed. In this study, the goal is to develop target-driven adaptive randomization strategies by using composite endpoints based on a joint frailty model. We discuss balanced designs and response-adaptive randomization. Balanced designs are commonly used, while the allocation method of the response-adaptive randomization can allow more participants to receive more effective treatment, which is a desirable and ethical approach. According to the results, the proposed procedure when using composite endpoints can reduce the number of trial participants receiving inferior treatment compared to that of the balanced designs while achieving the desired allocation target. An R Shiny application is also available for calculating sample sizes and allocation probabilities. Finally, two clinical trials are used to introduce the proposed procedure.
Andersen, P.K., and Gill, R.D. (1982). Cox’s regression model for counting processes: a large sample study. The Annals of Statistics, 10(4), 1100–1120.
Berkson, J., and Gage, R.P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association, 47(259), 501-515.
Bofill Roig, M., and Gómez Melis, G. (2018). Selection of composite binary endpoints in clinical trials. Biometrical Journal, 60(2), 246-261.
Eisele, J.R. (1994). The doubly adaptive biased coin design for sequential clinical trials. Journal of Statistical Planning and Inference, 38(2), 249-261.
Eisele, J.R., and Woodroofe, M. B. (1995). Central limit theorems for doubly adaptive biased coin designs. The Annals of Statistics, 23(1), 234-254.
Gao, J., Su, P.F., Hu, F., and Cheung, S.H. (2020). Adaptive treatment allocation for comparative clinical studies with recurrent events data. Biometrics 76(1), 183-196.
Greenberg, B., et al. (2014). Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium upregulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC: Heart Failure, 2(1), 84-92.
Hu, F., and Rosenberger, W.F. (2003). Optimality, variability, power: Evaluating response-adaptive randomization procedures for treatment comparisons. Journal of the American Statistical Association, 98(463), 671-678.
Hu, F., and Rosenberger, W. F. (2006). The theory of response-adaptive randomization in clinical trials. John Wiley & Sons.
Hu, F., Rosenberger, W. F., and Zhang, L. X. (2006). Asymptotically best response-adaptive randomization procedures. Journal of Statistical Planning and Inference, 136(6), 1911-1922.
Hu, F., and Zhang, L. X. (2004). Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials. The Annals of Statistics, 32(1), 268-301.
Liu, L., Wolfe, R. A., and Huang, X. (2004). Shared frailty models for recurrent events and a terminal event. Biostatistics, 60(3), 747-756.
Mack, M.J., et al. (2018). Cardiovascular outcomes assessment of the MitraClip in patients with heart failure and secondary mitral regurgitation: design and rationale of the COAPT trial. American Heart Journal, 205, 1-11.
Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68(2), 373-379.
Rosenberger, W. F., and Lachin, J. M. (2015). Randomization in clinical trials: theory and practice. John Wiley & Sons.
Rousson, V., and Seifert, B. (2008). A mixed approach for proving non-inferiority in clinical trials with binary endpoints. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(2), 190-204.
Rondeau, V., et al. (2007). Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics, 8(4), 708-721.
Su, P.F. (2022). Response-adaptive treatment allocation for clinical studies with recurrent event and terminal event data. Statistics in Medicine, 41(2), 258-275.
Su, P. F., and Cheung, S. H. (2018). Response-adaptive treatment allocation for survival trials with clustered right-censored data. Statistics in Medicine, 37(16), 2427-2439.
Su, P. F., Zhong, J., and Ou, H. T. (2019). Semiparametric additive rates model for recurrent events data with intermittent gaps. Statistics in medicine, 38(8), 1343-1356.
Wu, L., and Cook, R.J. (2013). The design of intervention trials involving recurrent and terminal events. Statistics in Biosciences, 5, 261-285.