簡易檢索 / 詳目顯示

研究生: 朱家民
Chu, Chia-Ming
論文名稱: 以原子層沉積技術備製多台地形通道氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體之探討
Investigation of Multi-Mesa Channel AlGaN/GaN MOSHEMTs by Atomic Layer Deposition
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 80
中文關鍵詞: 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體多台地形通道原子層沉積二氧化鋯
外文關鍵詞: AlGaN/GaN, metal-oxide-semiconductor high-electron-mobility transistor (MOSHEMT), multi-mesa channel, atomic layer deposition, ZrO2
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們備製多台地形通道之氮化鋁鎵/氮化鎵高電子遷移率電晶體,藉由多台地形通道之溝渠結構作為通道之散熱處,有效降低元件之自發熱效應,最大電流密度與最大轉換電導值為585 mA/mm和124 mS/mm。此外,我們以原子層沉積技術沉積高介電常數之二氧化鋯薄膜,製備出金氧半高電子遷移率電晶體,藉以改善蝕刻製程而造成閘極漏電流增加之情形。我們以兩種方式備製金氧半高電子遷移率電晶體,其製程包含前段式製程與後段式製程,其中以後段式製程備製之金氧半高電子遷移率電晶體擁有較低之漏電流、較大之電流開關比與較小之次臨界擺幅。最後,我們分別比較平面式結構與多台地形通道結構之金氧半高電子遷移率電晶體(後段式製程),相較於平面式結構,多台地形通道金氧半高電子遷移率電晶體顯示出較低之自發熱效應與較佳之閘極控制力。

    In this study, multi-mesa channel (MMC) AlGaN/GaN high-electron-mobility transistors (HEMTs) are fabricated. The self-heating effect of MMC HEMTs is suppressed since the trench of the MMC acts as a heat spreader, dissipating heat. The maximum drain current and maximum transconductance are 585 mA/mm and 124 mS/mm, respectively. Atomic layer deposition is utilized to deposit a high-dielectric-constant thin film of ZrO2, which lowers the leakage current caused by the etching process. Two methods are used to fabricate MMC metal-oxide-semiconductor (MOS) HEMTs, namely depositing the oxide layer before the source and drain (S/D) process (FEOL) and depositing the oxide layer after the S/D process (BEOL). Compared with MMC MOSHEMTs (FEOL), MMC MOSHEMTs (BEOL) have a lower gate leakage current, a larger Ion/Ioff ratio, and a smaller subthreshold swing. Finally, the BEOL process is used to fabricate AlGaN/GaN MOSHEMTs based on the MMC structure and the planar structure, respectively. Compared with the planar MOSHEMTs, the ZrO2 MMC MOSHEMTs exhibit less self-heating and better gate controllability.

    中文摘要 I Abstract III 誌 謝 V CONTENTS VII FIGURE CAPTIONS X TABLE CAPTIONS XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Organization 7 Chapter 2 Principle of AlGaN/GaN HEMT 9 2.1 Lattice Structure 9 2.2 AlGaN/GaN Heterojunction 11 2.2.1 Two-Dimensional Electron Gas 11 2.2.2 Spontaneous Polarization 12 2.2.3 Piezoelectric Polarization 14 2.2.4 Procedure of Forming 2DEG 17 Chapter 3 Experiments and Device Fabrication 19 3.1 Experimental Equipment 19 3.1.1 Electron Beam Evaporator 19 3.1.2 Rapid Thermal Annealing System 19 3.1.3 Spin Coater 20 3.1.4 Mask Aligner 20 3.1.5 ICP Etching System 20 3.1.6 Atomic Layer Deposition 21 3.2 Fabrication Process 25 3.2.1 Trench Structure and Mesa Isolation 26 3.2.2 Source and Drain Ohmic Contact 27 3.2.3 Deposition of Gate Dielectric Layer 28 3.2.4 Gate Pattern Definition 28 3.2.5 Schottky Gate Contact 29 Chapter 4 Results and Discussion 35 4.1 Multi-Mesa Channel AlGaN/GaN HEMTs 35 4.1.1 Physical Properties 35 4.1.1.1 Transmission Electron Microscopy 35 4.1.2 Device Performance 37 4.1.2.1 Saturation Drain Current 37 4.1.2.2 Transfer Characteristics and Transconductance 39 4.1.2.3 Gate Leakage Current 41 4.1.2.4 Subthreshold Swing 42 4.2 Different Processes of ZrO2 AlGaN/GaN MMC MOSHEMT 44 4.2.1 Physical Properties 44 4.2.1.1 Transmission Electron Microscopy 44 4.2.2 Device Performance 48 4.2.2.1 Saturation Drain Current 48 4.2.2.2 Transfer Characteristics and Transconductance 50 4.2.2.3 Gate Leakage Current 51 4.2.2.4 Subthreshold Swing 53 4.2.2.5 OFF-State Breakdown Voltage 54 4.2.2.6 Pulse I-V Characteristics 55 4.2.2.7 Cutoff Frequency & Maximum Oscillation Frequency 56 4.2.2.8 Flicker Noise 58 4.3 Comparison of ZrO2 MMC MOSHEMT Based on Different Structure 60 4.3.1 Physical Properties 60 4.3.1.1 Transmission Electron Microscopy 60 4.3.2 Device Performance 61 4.3.2.1 Saturation Drain Current 61 4.3.2.2 Transfer Characteristics and Transconductance 62 4.3.2.3 Gate Leakage Current 63 4.3.2.4 Subthreshold Swing 65 4.3.2.5 OFF-State Breakdown Voltage 66 4.3.2.6 C-V Characteristics 67 Chapter 5 Conclusion 68 Chapter 6 Future Work 71 References 72  

    [1] Jie Hu, Yuhao Zhang, Min Sun, Daniel Piedra, Nadim Chowdhury, and Tomás Palacios, “Materials and processing issues in vertical GaN power electronics,” Mater. Sci. Semicond. Process, vol. 78, pp. 75-84, May 2017.
    [2] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
    [3] Umesh K. Mishra, Primit Parikh, and Yi-Feng Wu “AlGaN/GaN HEMTs—An overview of device operation and applications,” Proc. IEEE, vol. 90, no. 6, pp 1022-1031, Jun. 2002.
    [4] S. Khandelwal, and T.A. Fjeldly, “A physics based compact model of I–V and C–V characteristics in AlGaN/GaN HEMT devices,” Solid-State Electron., vol. 76, pp. 60-66, Jul. 2012
    [5] X. Cheng, M. Li, and Yan Wang, “Physics-based compact model for AlGaN/GaN MODFETs with close-formed I–V and C–V characteristics,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2881-2887, Dec. 2009.
    [6] P. Mukhopadhyay, U. Banerjee, A. Bag, S. Ghosh, and D. Biswas, “Influence of growth morphology on electrical and thermal modeling of AlGaN/GaN HEMT on sapphire and silicon,” Solid-State Electron., vol. 104, pp. 101-108, Dec. 2015.
    [7] S. C. Jain, M.Willander, J. Narayan, R. Van Overstraeten, “III–nitrides:Growth, characterisation, and properties,” Appl. Phys. Rev., vol. 87, p. 965, 2000.
    [8] Electronicdesign Website, [Online]. Available: http://www.electronicdesign.com/power/optimize-power-scheme-these-transient-times.
    [9] M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto, and H. Yamamoto, “Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN,” Appl. Phys. Lett., vol. 105, p. 193509, Nov. 2014.
    [10] G. J. Riedel, J. W. Pomeroy, K. P. Hilton, J. O. Maclean, D. J. Wallis, M. J. Uren, T. Martin, U. Forsberg, A. Lundskog, A. Kakanakova-Georgieva, G. Pozina, E. Janzen, R. Lossy, R. Pazirandeh, F. Brunner, J. Wurfl, and M. Kuball, “Reducing thermal resistance of AlGaN/GaN electronic devices using novel nucleation layers,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 103-105, Feb. 2009.
    [11] Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun., vol. 3, p. 827, May. 2012.
    [12] Chih-Chun Hu, Tai-Lung Lee, Yong-Jie Zou, Kuan-Wei Lee, and Yeong-Her Wang, “Postoxidation thermal annealing effects of liquid phase deposited TiO2 on (NH4)2Sx-treated AlGaAs,” Thin Solid Films, vol. 563, pp40-43, Jul. 2014
    [13] Tsu-Yi Wu, Po-Wen Sze, Chih-Chun Hu, Tong-Jyun Huang, and Yeong-Her Wang,” AlGaN/GaN metal oxide semiconductor high electron mobility transistor using liquid-phase deposited strontium titanate,” Solid-State Electron., vol. 82, pp.1-5, Apr. 2013.
    [14] Chih-Chun Hu, Cheng-En Wu, Hsien-Cheng Lin, Kuan-Wei Lee, and Yeong-Her Wang, “Enhancement-mode In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors with sol-gel processed gate dielectric,” Mater. Sci. Semicond. Process., vol. 29, pp. 272-276, 2015
    [15] H. R. Wu, K. W. Lee, T. B. Nian, D. W. Chou, J. J. Huang Wu, Y. H. Wang, M. P. Huang, P. W. Sze, Y. K. Su, S. J. Chang, C. H. Ho, C. I. Chiang, Y. T. Chern, F. S. Juang, T. C. Wen, and W. I. Lee, “Liquid phase deposited SiO2 on GaN,” Mater. Chem. Phys., vol. 80, no. 1, pp. 329–333, Apr. 2003.
    [16] Adivarahan, J. Yang, A. Koudymov, G. Simin, and M. A. Khan, “Stable CW operation of field-plated GaN-AlGaN MOSHFETs at 19 W/mm,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 535–537, Aug. 2005.
    [17] T. E. Hsieh, E. Y. Chang, Y. Z. Song, Y. C. Lin, H. C. Wang, S. C. Liu, S. Salahuddin, and C. C. Hu, “Gate recessed quasi-normally off Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 732-734, Jul. 2014.
    [18] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOS-HEMT with HfO2 Dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008
    [19] T. J. Anderson, V. D. Wheeler, D. I. Shahin, M. J. Tadjer, A. D. Koehler, K. D. Hobart, A. Christou, F. J. Kub, and C. R. Eddy, Jr., “Enhancement mode AlGaN/GaN MOS high-electron-mobility transistors with ZrO2 gate dielectric deposited by atomic layer deposition,” Appl. Phys. Exp., vol. 9, p. 071003, Aug. 2016.
    [20] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang AlGaN/GaN MOSHEMTs with Liquid-Phase Deposited TiO2 as Gate Dielectric,” IEEE Trans. on Electronic Devices, vol.56, no.12, pp. 2911-2916, Dec. 2009.
    [21] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, “AlGaN/GaN Metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric,” J. Electrochem. Soc., vol. 157 no. 10, pp. 947-951, 2010.
    [22] C. C. Hu, C. A. Chiu, J. X. Xu, T. Y. Wu, P. W. Sze, and Y. H. Wang, “Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors,” Vacuum, vol. 118, pp. 142-146, Aug. 2015.
    [23] C. C. Hu, M. S. Lin, T. Y. Wu, P. W. Sze, and Y. H. Wang, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited barium-doped TiO2 as gate dielectric,” IEEE Trans. Electron Devices, vol. 59, no. 1, pp121-127, 2012
    [24] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance–voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density distribution at Al2O3/AlGaN interface,” Jpn. J. Appl. Phys., vol. 50, p. 021001, Feb. 2011.
    [25] K. Lee, W. Jang, H. Kim, H. Lim, B. Kim, H. Seo, and H. Jeon, “Leakage current suppression in spatially controlled Si-doped ZrO2 for capacitors using atomic layer deposition,” Thin Solid Films, vol. 657, pp. 1-7, Apr. 2018.
    [26] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, p. 121301, Jun. 2005.
    [27] Hanada T. (2009) Basic Properties of ZnO, GaN, and Related Materials. In: Yao T., Hong SK. (eds) Oxide and Nitride Semiconductors. Advances in Materials Research, vol 12. Springer, Berlin, Heidelberg
    [28] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [29] F. Bernardini and V. Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, p. 56, Oct. 1997.
    [30] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, no. 8, pp. 4520-4526, Oct. 1999.
    [31] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, Jan. 2000.
    [32] GaNHEMT Website, [Online]. Available: http://www.ganhemt.com/qj/54.html
    [33] J. H. Edgar, Properties of Group III Nitrides. London:INSPEC, 1994.
    [34] W. Q. Chen and S. K.Hark, “Strain-Induced Effects in (111)-Oriented InAsP/InP, InGaAs/InAlAs Quantum Wells on InP Substrates,” J. Appl. Phys., vol. 77, no.11, pp. 5747-5749, Feb. 1995.
    [35] P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. M. Redwing, “Piezoelectric Charge Densities in AlGaN/GaN HFETs,” Electron. Lett., vol. 33, no.14, pp. 1230-1231, Jul. 1997.
    [36] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 71, no. 19, pp. 2794-2796, Sep. 1997.
    [37] X. G. He, D. G. Zhao, and D. S. Jiang, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chin. Phys. B vol. 24, no. 6, p. 067301, Apr. 2015.
    [38] R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Mater. Today, vol. 17, no. 5, pp. 236-246, Jun. 2014.
    [39] K. Ohi, and T. Hashizume, “Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor,” Jpn. J. Appl. Phys, vol. 48, p. 081002, Aug. 2009.
    [40] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. on Electronic Devices, vol. 60, no.10, pp. 2997-3004, Oct. 2013.
    [41] M. Azize and T. Palacios, “Top-down fabrication of AlGaN/GaN nanoribbons,” Appl. Phys. Lett., vol. 98, p. 042103, Jan. 2011.
    [42] K. Murakami, M. Rommel, V. Yanev, A. J. Bauer, and L. Frey, “Current voltage characteristics through grains and grain boundaries of high k dielectric thin films measured by tunneling atomic force microscopy,” AIP Conf. Proc., vol. 1395, pp. 134-138, 2011.
    [43] M. T. Hasan, T.i Asano, H. Tokuda, and M. Kuzuhara, “Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1379–1381, Nov. 2013.
    [44] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1661–1663, Mar. 2002.
    [45] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs,” IEEE Trans. Electron Device, vol. 52, no. 10, pp. 2117–2122, Oct. 2005.
    [46] V. Adivarahan, M. Gaevski, A. Koudymov, J. Yang, G. Simin, and M. Asif Khan, “Selectively doped high-power AlGaN/InGaN/GaN MOSDHFET,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 192–194, Feb. 2007.
    [47] Y. S. Lin, J. Y. Wu, C. Y. Chan, S. S. H. Hsu, C. F. Huang, and T. C. Lee, “Square-gate AlGaN/GaN HEMTs with improved trap-related characteristics,” IEEE Trans. on Electronic Devices, vol. 56, no.12, pp. 3207-3211, Dec. 2009.
    [48] A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, “Compact Modeling of Flicker Noise in HEMTs,” IEEE J. Electron Devices Soc., vol. 2, no. 6, pp. 174-178, Nov. 2017.
    [49] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K. J. Chen, and B. Zhang, “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 354-356, Mar. 2012.
    [50] J. H. Seo, Y. W. Jo, Y. J. Yoon, D. H. Son, C. H. Won, H. S. Jang, I. M. Kang, and J. H. Lee, “Al(In)N/GaN fin-type HEMT with very-low leakage current and enhanced I –V characteristic for switching applications,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 855-858, Jul. 2016.
    [51] T. Tamura, J. Kotani, S. Kasai, and T. Hashizume, “Nearly temperature-independent saturation drain current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor,” Appl. Phys. Exp., vol. 1, p. 023001, Aug. 2008.
    [52] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [53] J. Ma, and E. Matioli, “High performance tri-gate GaN power MOSHEMTs on silicon substrate,” IEEE Electron Device Lett., vol. 38, no. 3, pp. 732-734, Mar. 2017.
    [54] B. Lu, E. Matioli, and Tomás Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360-362, Mar. 2012.
    [55] C. Y. Chien, W. H. Wu, Y. H. You, J. H. Lin, C. Y. Lee, W. C. Hsu, C. H. Kuan, and R. M. Lin, “Breaking through the multi-mesa-channel width limited of normally off GaN HEMTs through modulation of the via-hole-length,” Nanoscale Res Lett., vol. 12, p. 420, 2017.
    [56] K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1376-1378, Oct. 2011.

    下載圖示 校內:立即公開
    校外:2023-12-31公開
    QR CODE