簡易檢索 / 詳目顯示

研究生: 陳俊吉
Chen, Chun-Chi
論文名稱: 探討側鏈修飾對共軛高分子物理性質及半導體型奈米碳管之分選效率
Impact of Side-Chain Modification on Conjugated Polymer's Physical Properties and Sorting Efficiency to Semiconducting Carbon Nanotubes
指導教授: 林彥丞
Lin, Yan-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 93
中文關鍵詞: 雙軸共軛共軛高分子單壁奈米碳管分選場效電晶體
外文關鍵詞: Biaxial conjugation, Conjugated polymers, Single-walled carbon nanotubes, Sorting, Field-effect transistors
相關次數: 點閱:96下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過高分子分選單壁奈米碳管是一種能夠有效獲取高純度半導體型奈米碳管的方法。而共軛高分子能夠選擇性地分選具有不同手性的半導體型奈米碳管,而共軛高分子的側鏈結構會影響這種分選能力。儘管已有大量研究通過側鏈修飾來改變共軛高分子的物理、光學和電學性質,但這些修飾對於分選半導體型奈米碳管效率的影響尚未得到充分探討。本研究探討了在萘二酰亞胺基的共軛高分子中引入各種共軛側鏈以創造雙軸延伸共軛模式的影響。具有四條辛基十二烷側鏈及苯平面分支的共軛側鏈萘二酰亞胺基共軛高分子(下以P3代稱)中,因其立體障礙(章節二)增加導致聚集能力下降,因此在甲苯溶液分散的更均勻,從而提高了包覆能力並形成更大束的高純度半導體型奈米碳管。低掠角X光繞射分析證實,共軛高分子與半導體型奈米碳管之間的相互作用是透過π–π堆疊。由P3分選出的半導體型奈米碳管所製備成的場效電晶體元件顯示出卓越的性能,其空穴遷移率相較於只有兩條辛基十二烷側鏈的萘二酰亞胺基共軛高分子(下以P1代稱)所分選出的半導體型奈米碳管製備成的元件有著顯著提高,達到4.72 cm² V⁻¹ s⁻¹,而P1只有2.21 cm² V⁻¹ s⁻¹,而前者具有較高的耐久性和偏壓穩定性。這些發現表明,雙軸延伸側鏈修飾是一種有前景的設計,可以提高使用共軛高分子對於分選半導體型奈米碳管的效率和性能。這一成就有助於開發更高效和穩定的電子器件。

    Polymer-wrapped single-walled carbon nanotubes (SWNTs) are a potential method for obtaining high-purity semiconducting (sc) SWNT solutions. Conjugated polymers (CPs) can selectively sort sc-SWNTs with different chiralities, and the structure of the polymer side chains influences this sorting capability. While extensive research has been conducted on modifying the physical, optical, and electrical properties of CPs through side-chain modifications, the impact of these modifications on the sorting efficiency of sc-SWNTs remains underexplored. This study investigates the introduction of various conjugated side chains into naphthalene diimide-based CPs to create a biaxial-extended conjugation pattern. The CP with a branched conjugated side chain (P3) exhibits reduced aggregation, resulting in improved wrapping ability and the formation of larger bundles of high-purity sc-SWNTs. Grazing incidence X-ray diffraction analysis confirms that the potential interaction between sc-SWNTs and CPs occurs through π–π stacking. The field-effect transistor device fabricated with P3/sc-SWNTs demonstrates exceptional performance, with significantly enhanced hole mobility of 4.72 cm² V⁻¹ s⁻¹ and high endurance/bias stability. These findings suggest that biaxially extended side-chain modification is a promising strategy for improving the sorting efficiency and performance of sc-SWNTs using CPs. This achievement can facilitate the development of more efficient and stable electronic devices.

    中文摘要 I ABSTRACT II 誌謝 III CONTENTS V LISTS OF FIGURES VII LISTS OF TABLES XII Chapter 1 Introduction 1 1.1 Conjugated Polymers 1 1.2 Molecular Design for Side-Chain Modification 3 1.3 Organic Field-effect Transistor 6 1.4 Semiconducting Carbon Nanotube 9 1.5 Research Objective 11 Chapter 2 Polymer Synthesization and Methods 13 2.1 Backgrounds 13 2.2 Experimental Section 14 2.3 Results and Discussion 31 2.4 Summary 39 Chapter 3 Characterization and FET Applications of Semiconducting Carbon Nanotubes Device 40 3.1 Backgrounds 40 3.2 Experimental Section 41 3.3 Results and Discussion 45 3.4 Summary 65 Chapter 4 Conclusion and Future Works 66 4.1 Conclusion 66 4.2 Future Works 67 Reference 69

    (1) Ding, L.; Yu, Z.-D.; Wang, X.-Y.; Yao, Z.-F.; Lu, Y.; Yang, C.-Y.; Wang, J.-Y.; Pei, J. Polymer Semiconductors: Synthesis, Processing, and Applications. Chemical Reviews 2023, 123 (12), 7421-7497.
    (2) Huang, Z.; Hao, Y.; Li, Y.; Hu, H.; Wang, C.; Nomoto, A.; Pan, T.; Gu, Y.; Chen, Y.; Zhang, T.; et al. Three-Dimensional Integrated Stretchable Electronics. Nature Electronics 2018, 1 (8), 473-480.
    (3) Takamatsu, S.; Lonjaret, T.; Ismailova, E.; Masuda, A.; Itoh, T.; Malliaras, G. G. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials 2016, 28 (22), 4485-4488.
    (4) Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529 (7587), 509-514.
    (5) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, 16, 578-580.
    (6) Liu, D.; Mun, J.; Chen, G.; Schuster, N. J.; Wang, W.; Zheng, Y.; Nikzad, S.; Lai, J.-C.; Wu, Y.; Zhong, D.; et al. A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society 2021, 143 (30), 11679-11689.
    (7) Park, J.-I.; Chung, J. W.; Kim, J.-Y.; Lee, J.; Jung, J. Y.; Koo, B.; Lee, B.-L.; Lee, S. W.; Jin, Y. W.; Lee, S. Y. Dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (DBTTT): High-Performance Small-Molecule Organic Semiconductor for Field-Effect Transistors. Journal of the American Chemical Society 2015, 137 (38), 12175-12178.
    (8) Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C.-H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; et al. High-efficiency and Air-Stable P3HT-Based Polymer Solar Cells with A New Non-Fullerene Acceptor. Nature Communications 2016, 7 (1), 11585.
    (9) Mulligan, C. J.; Wilson, M.; Bryant, G.; Vaughan, B.; Zhou, X.; Belcher, W. J.; Dastoor, P. C. A Projection of Commercial-Scale Organic Photovoltaic Module Costs. Solar Energy Materials and Solar Cells 2014, 120, 9-17.
    (10) Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. From Lab to Fab: How Must the Polymer Solar Cell Materials Design Change? – An Industrial Perspective. Energy & Environmental Science 2014, 7 (3), 925-943.
    (11) Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Advanced Functional Materials 2019, 30 (20), 1904545.
    (12) Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S.-K.; Oh, J. H.; Kim, Y.-H. Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. Chemistry of Materials 2015, 27 (5), 1732-1739.
    (13) Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C. Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors. Macromolecules 2016, 49 (22), 8540-8548.
    (14) Lu, C.; Wu, H. C.; Chiu, Y. C.; Lee, W. Y.; Chen, W. C. Biaxially Extended Quaterthiophene– and Octithiophene–Vinylene Conjugated Polymers for High Performance Field Effect Transistors and Photovoltaic Cells. Macromolecules 2012, 45 (7), 3047-3056.
    (15) Ocheje, M. U.; Charron, B. P.; Cheng, Y.-H.; Chuang, C.-H.; Soldera, A.; Chiu, Y.-C.; Rondeau-Gagné, S. Amide-Containing Alkyl Chains in Conjugated Polymers: Effect on Self-Assembly and Electronic Properties. Macromolecules 2018, 51 (4), 1336-1344.
    (16) Huang, Y.-W.; Lin, Y.-C.; Wu, Y.-S.; Wong, Y.-T.; Kuo, M.-Y.; Chen, W.-C.; Chueh, C.-C. Structure–Mobility Relationship of Benzodithiophene-Based Conjugated Polymers with Varied Biaxially Extended Conjugated Side Chains. Industrial & Engineering Chemistry Research 2020, 59 (19), 9105-9115.
    (17) Yuen, J. D.; Wudl, F. Strong Acceptors in Donor–Acceptor Polymers for High Performance Thin Film Transistors. Energy & Environmental Science 2013, 6 (2), 392-406.
    (18) Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. Chem 2018, 4 (12), 2748-2785.
    (19) Sanaullah, M.; Chowdhury, M. H. Subthreshold Swing Characteristics of Multilayer MoS2 Tunnel FET. In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2-5 Aug. 2015, 2015; pp 1-4.
    (20) Na, J. Y.; Kang, B.; Lee, S. G.; Cho, K.; Park, Y. D. Surface-Mediated Solidification of a Semiconducting Polymer during Time-Controlled Spin-Coating. ACS Applied Materials & Interfaces 2017, 9 (11), 9871-9879.
    (21) Weisman, R. B.; Bachilo, S. M.; Tsyboulski, D. Fluorescence Spectroscopy of Single-Walled Carbon Nanotubes in Aqueous Suspension. Applied Physics A 2004, 78 (8), 1111-1116.
    (22) Wang, J.; Lei, T. Enrichment of High-Purity Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Nanoscale 2022, 14 (4), 1096-1106.
    (23) Janas, D. Towards Monochiral Carbon Nanotubes: A Review of Progress in the Sorting of Single-Walled Carbon Nanotubes. Materials Chemistry Frontiers 2018, 2 (1), 36-63.
    (24) Yahya, I.; Bonaccorso, F.; Clowes, S. K.; Ferrari, A. C.; Silva, S. R. P. Temperature Dependent Separation of Metallic and Semiconducting Carbon Nanotubes Using Gel Agarose Chromatography. Carbon 2015, 93, 574-594.
    (25) Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-Assisted Dispersion and Separation of Carbon Nanotubes. Nature Materials 2003, 2 (5), 338-342.
    (26) Guo, C.; Ouyang, J.; Shin, H.; Ding, J.; Li, Z.; Lapointe, F.; Lefebvre, J.; Kell, A. J.; Malenfant, P. R. L. Enrichment of Semiconducting Single-Walled Carbon Nanotubes with Indigo-Fluorene-Based Copolymers and Their Use in Printed Thin-Film Transistors and Carbon Dioxide Gas Sensors. ACS Sensors 2020, 5 (7), 2136-2145.
    (27) Lei, T.; Chen, X.; Pitner, G.; Wong, H. S.; Bao, Z. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. Journal of the American Chemical Society 2016, 138 (3), 802-805.
    (28) Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; et al. Selective Dispersion of High Purity Semiconducting Single-Walled Carbon Nanotubes with Regioregular Poly(3-alkylthiophene)s. Nature Communications 2011, 2, 541.
    (29) Zheng, Y.; Zhang, S.; Tok, J. B.; Bao, Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc 2022, 144 (11), 4699-4715.
    (30) Ding, L.; Yu, Z. D.; Wang, X. Y.; Yao, Z. F.; Lu, Y.; Yang, C. Y.; Wang, J. Y.; Pei, J. Polymer Semiconductors: Synthesis, Processing, and Applications. Chemical Reviews 2023, 123 (12), 7421-7497.
    (31) Liu, D.; Mun, J.; Chen, G.; Schuster, N. J.; Wang, W.; Zheng, Y.; Nikzad, S.; Lai, J. C.; Wu, Y.; Zhong, D.; et al. A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society 2021, 143 (30), 11679-11689.
    (32) Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically Stretchable Conjugated Polymer Semiconductors in Field Effect Transistors. Progress in Polymer Science 2020, 100, 101181.
    (33) Sung, C. Y.; Lin, C. Y.; Chueh, C. C.; Lin, Y. C.; Chen, W. C. Investigating the Mobility-Compressibility Properties of Conjugated Polymers by the Contact Film Transfer Method with Prestrain. Macromolecular Rapid Communications 2024, 45 (1), e2300058.
    (34) Wu, H. C.; Lai, Y. C.; Chiu, Y. C.; Lee, W. Y.; Chen, W. C. Syntheses of Biaxially Extended Octithiophene‐Based Conjugated Copolymers for High‐Open‐Circuit‐Voltage Photovoltaic‐Cell Applications. Macromolecular Chemistry and Physics 2014, 215 (7), 638-647.
    (35) Tsai, C.-H.; Su, Y.-A.; Lin, P.-C.; Shih, C.-C.; Wu, H.-C.; Chen, W.-C.; Chueh, C.-C. High-Performance Ternary Polymer Solar Cells Using Wide-Bandgap Biaxially Extended Octithiophene-Based Conjugated Polymers. Journal of Materials Chemistry C 2018, 6 (26), 6920-6928.
    (36) Wu, H.-C.; Hong, C.-W.; Chen, W.-C. Biaxially Extended Thiophene–Isoindigo Donor–Acceptor Conjugated Polymers for High-Performance Flexible Field-Effect Transistors. Polymer Chemistry 2016, 7 (26), 4378-4392.
    (37) Chao, P.-Y.; Wu, H.-C.; Lu, C.; Hong, C.-W.; Chen, W.-C. Biaxially Extended Conjugated Polymers with Thieno[3,2-b]thiophene Building Block for High Performance Field-Effect Transistor Applications. Macromolecules 2015, 48 (16), 5596-5604.
    (38) Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. N-Type Organic Semiconducting Polymers: Stability Limitations, Design Considerations and Applications. Journal of Materials Chemistry C 2021, 9 (26), 8099-8128.
    (39) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chemistry of Materials 2004, 16 (23), 4436-4451.
    (40) Wang, Y.; Gong, Q.; Miao, Q. Structured and Functionalized Organic Semiconductors for Chemical and Biological Sensors Based on Organic Field Effect Transistors. Materials Chemistry Frontiers 2020, 4 (12), 3505-3520.
    (41) Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angewandte Chemie International Edition in English 1978, 17 (7), 522-524.
    (42) Munawar, S.; Zahoor, A. F.; Hussain, S. M.; Ahmad, S.; Mansha, A.; Parveen, B.; Ali, K. G.; Irfan, A. Steglich esterification: A Vrsatile Synthetic Approach Toward the Synthesis of Natural Products, Their Analogues/Derivatives. Heliyon 2024, 10 (1), e23416.
    (43) Guo, X.; Watson, M. D. Conjugated Polymers from Naphthalene Bisimide. Organic Letters 2008, 10 (23), 5333-5336.
    (44) Wang, S.; Li, H.; Zhao, K.; Zhang, L.; Zhang, Q.; Yu, X.; Tian, H.; Han, Y. Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules 2022, 55 (7), 2497-2508.
    (45) Espinet, P.; Echavarren, A. M. The Mechanisms of the Stille Reaction. Angewandte Chemie International Edition 2004, 43 (36), 4704-4734.
    (46) Fatemi, S. M.; Foroutan, M. Recent Developments Concerning the Dispersion of Carbon Nanotubes in Surfactant/Polymer Systems by MD simulation. Journal of Nanostructure in Chemistry 2016, 6 (1), 29-40.
    (47) He, Y.; Liao, H.; Lyu, S.; Xu, X.-Q.; Li, Z.; McCulloch, I.; Yue, W.; Wang, Y. Coupling Molecular Rigidity and Flexibility on Fused Backbones for NIR-II Photothermal Conversion. Chemical Science 2021, 12 (14), 5177-5184.
    (48) Kokalj, A. On the Alleged Importance of the Molecular Electron-Donating Ability and the HOMO–LUMO Gap in Corrosion Inhibition Studies. Corrosion Science 2021, 180, 109016.
    (49) Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Advanced Materials 2013, 25 (21), 2948-2956.
    (50) Wang, K.; Dong, H.; Zhou, D.; Ito, Y.; Hu, L.; Zhang, Z.; Zhu, X. Facile Fabrication of Semiconducting Single-Walled Carbon Nanotubes Patterns on Flexible Substrate Based on a Photoimmobilization Technique. ACS Applied Materials & Interfaces 2020, 12 (7), 8722-8729.
    (51) Ye, G.; Talsma, W.; Tran, K.; Liu, Y.; Dijkstra, S.; Cao, J.; Chen, J.; Qu, J.; Song, J.; Loi, M. A.; et al. Polar Side Chains Enhance Selection of Semiconducting Single-Walled Carbon Nanotubes by Polymer Wrapping. Macromolecules 2022, 55 (4), 1386-1397.
    (52) Talsma, W.; Ye, G.; Liu, Y.; Duim, H.; Dijkstra, S.; Tran, K.; Qu, J.; Song, J.; Chiechi, R. C.; Loi, M. A. Efficient Selective Sorting of Semiconducting Carbon Nanotubes Using Ultra-Narrow-Band-Gap Polymers. ACS Applied Materials & Interfaces 2022, 14 (33), 38056-38066.
    (53) Tung, Y. H.; Su, S. W.; Su, E. J.; Jiang, G. H.; Chen, C. C.; Yu, S. S.; Chiu, C. C.; Shih, C. C.; Lin, Y. C. Semiconducting Carbon Nanotubes with Light‐Driven Gating Behaviors in Phototransistor Memory Utilizing an N‐Type Conjugated Polymer Sorting. Small Science 2024, 4 (4), 2300268.
    (54) Liu, D.; Li, P.; Yu, X.; Gu, J.; Han, J.; Zhang, S.; Li, H.; Jin, H.; Qiu, S.; Li, Q.; et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes. Advanced Materials 2017, 29 (8), 1603565.
    (55) Rivnay, J.; Noriega, R.; Kline, R. J.; Salleo, A.; Toney, M. F. Quantitative Analysis of Lattice Disorder and Crystallite Size in Organic Semiconductor Thin Films. Physical Review B 2011, 84 (4), 045203.
    (56) Wang, Y.; Zhang, Z.; Zheng, R.; Zhang, Y. Calculation Method for the Dielectric Constant of Thioglycolic Acid Grafted Modified SBS Dielectric Elastomer. Arabian Journal of Chemistry 2021, 14 (10), 103361.
    (57) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. Journal of Cheminformatics 2012, 4 (1), 17.
    (58) Sun, H. COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B 1998, 102 (38), 7338-7364.
    (59) Sun, H.; Ren, P.; Fried, J. R. The COMPASS Force Field: Parameterization and Validation for Phosphazenes. Computational and Theoretical Polymer Science 1998, 8 (1), 229-246.
    (60) Chortos, A.; Pochorovski, I.; Lin, P.; Pitner, G.; Yan, X.; Gao, T. Z.; To, J. W. F.; Lei, T.; Will, J. W., III; Wong, H. S. P.; et al. Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano 2017, 11 (6), 5660-5669.
    (61) Lei, T.; Chen, X.; Pitner, G.; Wong, H. S. P.; Bao, Z. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. Journal of the American Chemical Society 2016, 138 (3), 802-805.
    (62) Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman Spectroscopy of Carbon Nanotubes. Physics Reports 2005, 409 (2), 47-99.
    (63) Li, Z.; Chen, W.; Liu, J.; Jiang, D. Can Linear Conjugated Polymers Form Stable Helical Structures on the Carbon Nanotubes? ACS Applied Materials & Interfaces 2022, 14 (43), 49189-49198.
    (64) Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. Advanced Materials 2019, 31 (9), 1800750.
    (65) Persson, N. E.; McBride, M. A.; Grover, M. A.; Reichmanis, E. Automated Analysis of Orientational Order in Images of Fibrillar Materials. Chemistry of Materials 2017, 29 (1), 3-14.
    (66) Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nature Materials 2013, 12 (11), 1038-1044.
    (67) Cai, L.; Wang, C. Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters 2015, 10 (1), 320.
    (68) Park, M.; Kim, S.; Kwon, H.; Hong, S.; Im, S.; Ju, S.-Y. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors. ACS Applied Materials & Interfaces 2016, 8 (35), 23270-23280.
    (69) Tour, J. M. Seeds of Selective Nanotube Growth. Nature 2014, 512 (7512), 30-31.
    (70) Min, H.; Kang, B.; Shin, Y. S.; Kim, B.; Lee, S. W.; Cho, J. H. Transparent and Colorless Polyimides Containing Multiple Trifluoromethyl Groups as Gate Insulators for Flexible Organic Transistors with Superior Electrical Stability. ACS Applied Materials & Interfaces 2020, 12 (16), 18739-18747.
    (71) Dzienia, A.; Just, D.; Wasiak, T.; Milowska, K. Z.; Mielańczyk, A.; Labedzki, N.; Kruss, S.; Janas, D. Size Matters in Conjugated Polymer Chirality-Selective SWCNT Extraction. Advanced Science 2024, 2402176.
    (72) Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Letters 2012, 1 (7), 815-819.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE