簡易檢索 / 詳目顯示

研究生: 朱宜萱
Chu, I-Hsuan
論文名稱: 回收廢鋁蝕刻液中磷酸之研究
Investigation of phosphoric acid recovery from the spent aluminum-etching wastewater
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 鋁蝕刻廢液減壓分餾流體化床磷酸
外文關鍵詞: spent aluminum-etching wastewater, phosphoric acid, Vacuum Fractional Distillation, Fluidized-bed crystallization
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於台灣光電產業發展蓬勃,TFT-LCD蝕刻製程排放高濃度含磷廢液,主要成分包括磷酸、硝酸、醋酸與微量(<0.5wt%)的鋁、鉬等金屬元素。本研究與廠商合作開發技術以回收及資源化鋁蝕刻廢液。初步測試減壓分餾、真空薄膜蒸餾、低溫結晶及流體化床結晶技術處理廢液。其中真空薄膜蒸餾無法有效分離硝酸、醋酸與磷酸;低溫結晶技術分離金屬離子與磷酸需經過多次再結晶才能純化磷酸,尚有研究空間;而減壓分餾能分離鋁蝕刻廢液中之硝酸;另外,流體化床磷酸鐵結晶技術可藉由化學沉澱於混和酸中產出FePO4·Fe(OH)3之複合物。因此本研究主要針對串聯減壓分餾及流體化床結晶技術回收鋁蝕刻廢液。研究以100 g 鋁蝕刻廢液進行,先以減壓分餾分離鋁蝕刻廢液中之硝酸、醋酸與磷酸,結果顯示將溫度控制為150 oC、真空度為-700 torr時,可分離醋酸(7.49 g)與硝酸(4.81 g)及少量磷酸(5.03 g)至蒸餾端,殘餘液部分則含有磷酸(50.31 g)與鋁、鉬等金屬元素( ~ 0.42 g);之後利用流體化床反應器處理含磷酸蒸餾液,並回收磷酸鐵結晶。以硫酸鐵為沉澱劑及磷酸亞鐵為晶種,進料之蒸餾液磷酸濃度稀釋至11.6 mM,結果顯示流體化床程序回收廢水磷酸所得磷酸鐵平均粒徑為1 mm,XRD證實其晶相為非晶相,並且處理效果與pH、進料莫耳比等影響磷酸過飽和度之因子有關。控制操作條件為:截面負荷 = 0.688 kg-P m-2 h-1、pHe = 2.30 ± 0.1、Fe/P = 1.2,可達最佳除磷效率為95%,結晶比例為82%。鋁、鉬等殘留在殘餘液之金屬離子則將在後續繼續研究並利用低溫結晶進行分離回收。經過本研究減壓分餾及流體化床串聯技術後,可回收82 %以上之磷酸,而硝酸、醋酸及其他金屬離子待後續以其他技術進行回收處理。

    In view of the vigorous development of Taiwan’s optoelectronic industry, the TFT-LCD etching process discharges high-concentration phosphorus-containing wastewater. The main components include phosphoric acid, nitric acid, acetic acid and trace amounts (< 0.5 wt%) of aluminum, molybdenum and other metal elements. This research is to develop a series of process to recycle and reuse the spent aluminum-etching wastewater. Preliminary tests for vacuum fractional distillation (VFD), vacuum membrane distillation (VMD), melt crystallization (MC) and fluidized-bed crystallization (FBC) to recovery the spent wastewater. Among them, only VFD and FBC could be used to recover phosphoric acid effectively. Therefore, this study mainly focuses on the series of VFD and FBC which was carried out with 100 g of wastewater. Nitric acid and acetic acid were first separate from wastewater by VFD. When the temperature is 150 oC with -700 torr of pressure, acetic acid (7.49 g), nitric acid (4.81 g) and small amount of phosphoric acid (5.03 g) could be separated to the permeate, around 50.31 g of phosphoric acid and metal ions (0.42 g) are remained in residue. Then, use FBC to recover the remaining phosphoric acid from the permeate to produce iron phosphate. When the feed is 11.6 mM-P, the operating conditions were: surface loading = 0.688 kg-Pm-2h-1, pHe = 2.30 ± 0.1, Fe/P = 1.2, the optimum phosphorus removal efficiency was 95 % and the crystallization ratio was 82 %. For the series of VFD and FBC, around 82 % of phosphoric acid can be recovered.

    摘要 I 英文延伸摘要 II 誌謝 IX 目錄 XI 表目錄 XIV 圖目錄 XV 第1章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 4 第2章 文獻回顧 5 2-1 TFT-LCD產業製程及廢棄物 5 2-1-1 TFT-LCD製程含磷廢液 8 2-2 磷酸鹽的性質 10 2-3 磷的危害及法規標準 12 2-4 鋁蝕刻廢液回收專利 14 2-4-1 磷酸純化再利用方法 [18] 15 2-4-2 一種廢鋁蝕刻液的綜合利用工藝 [19] 17 2-4-3 自鋁蝕刻液中回收硝酸、醋酸或其鹽類的方法 [20] 19 2-5 鋁蝕刻廢液處理技術簡介 20 2-6 分餾技術 22 2-6-1 分餾之原理 22 2-7 薄膜蒸餾技術 25 2-7-1 薄膜蒸餾技術之原理 25 2-7-2 薄膜濕潤 28 2-8 低溫結晶技術 30 2-8-1 低溫結晶技術之原理 30 2-9 流體化床結晶技術 33 2-9-1 流體化床結晶(Fluidized-Bed Crystallization)技術 33 2-9-2 流體化床結晶技術之沿革與發展現況 36 2-9-3 流體化床結晶技術之文獻回顧 38 2-10 晶體之成核 44 2-10-1 結晶與沉澱 44 2-10-2 結晶成長與雙重阻力模式 46 2-10-3 介穩區 48 2-11 磷酸鐵之沉澱化學 51 第3章 實驗設備、材料與方法 53 3-1 研究架構及流程 53 3-2 實驗設備 55 3-2-1 減壓分餾實驗裝置 55 3-2-2 薄膜蒸餾實驗裝置 56 3-2-3 批次化學沉澱實驗裝置 56 3-2-4 流體化床反應器裝置 57 3-2-5 低溫結晶實驗裝置 58 3-3 符號及公式定義 59 3-3-1 減壓分餾之符號及定義 59 3-3-2 真空薄膜蒸餾 59 3-3-3 批次化學沉澱之符號及定義 60 3-3-4 流體化床之符號及定義 61 3-4 實驗藥品 62 3-5 實驗步驟 63 3-5-1 減壓分餾實驗 63 3-5-2 真空薄膜蒸餾 63 3-5-3 批次化學沉澱 64 3-5-4 流體化床 65 3-5-5 低溫結晶 65 3-6 水質監測儀器與分析方法 66 3-6-1 感應耦合電漿園子發射光譜儀(ICP) 66 3-6-2 離子層析儀(IC) 67 3-7 顆粒特性分析 68 3-7-1 X光繞射分析儀 (X-Ray Diffraction analyzer, XRD) 68 3-7-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 68 3-7-3 能量散佈光譜儀(Energy Dispersive Spectrometer,EDS) 69 3-7-4 傅立葉轉換式紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 69 3-7-5 熱重分析儀(Thermogravimetric Analyzer, TGA) 69 第4章 結果與討論 70 4-1 技術篩選 71 4-1-1 減壓分餾 71 4-1-2 真空薄膜蒸餾 73 4-1-3 流體化床 77 4-1-3-1 Jar-Test 合成磷酸鐵研究之pHf探討 77 4-1-4 低溫結晶 79 4-2 減壓分餾 82 4-2-1 溫度對分餾之影響 82 4-2-2 真空壓對分餾之影響 85 4-3 流體化床 87 4-3-1 pHe對FBC的影響 89 4-3-2 莫爾比Fe/P對FBC的影響 91 4-3-3 截面負荷對FBC的影響 93 4-3-4 流體化床除磷顆粒表面型態觀察及元素分析 95 4-3-4-1 磷酸鐵顆粒之表面結構與型態 95 4-3-4-2 磷酸鐵顆粒之成分分析 97 4-3-5 流體化床除磷顆粒熱分析 100 4-3-6 流體化床除磷顆粒晶型分析 102 第5章 結論與建議 103 5-1 結論 103 5-1-1 減壓分餾 103 5-1-2 流體化床 103 5-1-2-1 化學混凝磷酸鐵鹽之除磷技術 103 5-1-2-2 流體化床磷酸鐵結晶之除磷技術 104 5-1-3 鋁蝕刻廢液回收之程序 105 5-2 建議 107 參考文獻 108 附錄 A. 利用工業級三價鐵溶液進行流體化床磷酸鐵結晶 113

    鋁蝕刻液(Al-Etchant)MSDS安全資料表,www.sfchem.com.tw/upload/media/MSDS/.../SHS0429T42%20鋁蝕刻液%20SDS.pdf.
    經濟部, “電子資訊業,重點產業發展策略,制定產業發展策略”.
    光電業資源化應用技術手冊:薄膜電晶體液晶顯示器,工業局(2003).
    高瑛紜,劉蘭萍,王義基,液晶面板製造業廢棄物資源化現況平析,綠基會通訊,2008年8月,pp. 6 – 9.
    濕蝕刻製程介紹暨機台原理簡介, 光電科技工業協進會PIDA 2003.11 48期.
    U. Berg, et al., "Is phosphorus recovery from waster water feasible?", Environmental Technology, 28, 165-172 (2007).
    Fukagawa, et al. "The kidney and bone metabolism: Nephrologists' point of view." Journal of bone and mineral metabolism 24.6: 434-438 (2006).
    Laroche, et al. "Phosphate diabetes, tubular phosphate reabsorption and phosphatonins." Joint Bone Spine 72.5: 376-381. (2005).
    Razzaque, et al. "Therapeutic potential of klotho–FGF23 fusion polypeptides: WO2009095372." Expert opinion on therapeutic patents 20.7: 981-985. (2010).
    Voormolen, et al. "High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients." Nephrology Dialysis Transplantation 22.10: 2909-2916. (2007).
    D'Agostino, R. B. "Vitamin D deficiency and risk of cardiovascular disease." Circulation 117: 503-511. (2008).
    Shoji, et al. "Lower risk for cardiovascular mortality in oral 1α-hydroxy vitamin D3 users in a haemodialysis population." Nephrology Dialysis Transplantation 19.1: 179-184. (2004).
    Effluent Standard, EPA, USA (2014).
    Uniform National Effluent Standards, Ministry of the Environment, Japan, October 21, (2015).
    第 358AK 章 - 《技術備忘錄:排放入排水及排污系統、內陸及海岸水域的流出物的標準》,香港.
    放流水標準第二條、第二條之一、第五條修正總說明,台灣.
    Saroja, et al. "Ti–5Ta–1.8 Nb: An Advanced Structural Material for High Performance Application in Aggressive Oxidising Environments." Transactions of the Indian Institute of Metals 65.2: 111-133. (2012).
    CN1880216A磷酸純化再利用方法,台灣肥料股份有限公司,中國.
    CN101439849A一種廢鋁蝕刻液的綜合利用工藝,中國北京.
    200635848 自平面顯示器清洗製程之包含硝酸、醋酸及磷酸的混合廢液中回收硝酸、醋酸或其鹽類的方法,惠豐化工廠,中華民國.
    J. Thistleton, et al., "Mechanisms of Chemical Phosphorus Removal Iron (III) Salts" Process Safety and Environmental Protection, 80: 265-269 (2002).
    Kim, et al. "Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation", Separation and purification technology, 90 :64-68. (2012).
    Motoda, et al. "Recovery of phosphoric acid from waste acid mixture with solvent extraction." (2004).
    Kim, et al. "Purification of phosphoric acid from waste acid etchant using layer melt crystallization." Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology 29.2: 271-276. (2006).
    Morse, et al. "Phosphorus removal and recovery technologies." Science of the total environment 212.1: 69-81. (1998).
    Van den Broeck, et al. "Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor." IEEE Transactions on semiconductor manufacturing 16.3: 423-428. (2003).
    Lagi, et al. "Distillation: Integration of a historical perspective." Australian Journal of Education in Chemistry 70: 5-10. (2009).
    國立台灣大學化學系有機教研小組, 大學有機化學實驗, 第七版, 國立台灣大學出版中心 (2004).
    楊座圖,膜科學技術-過程與原理, 華東理工大學出版社(2009).
    Lawson, et al. "Membrane distillation." Journal of membrane Science 124.1: 1-25. (1997).
    Chen, et al. "Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system." Sustainable Environment Research 23: 209-214. (2013).
    Shi, et al. "Studies on simulation and experiments of ethanol–water mixture separation by VMD using a PTFE flat membrane module." Separation and Purification Technology 123: 53-63. (2014).
    Shirazi, et al. "Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters." Chemical Engineering Communications 202.4: 457-466. (2015).
    Shirazi, et al. "Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation." Chemical Engineering and Processing: Process Intensification 78: 58-66. (2014).
    Madhumala, M., et al. "Recovery of hydrochloric acid and glycerol from aqueous solutions in chloralkali and chemical process industries by membrane distillation technique." Journal of the Taiwan Institute of Chemical Engineers 45.4: 1249-1259. (2014).
    Gryta, M., et al. "Membrane distillation of NaCl solution containing natural organic matter." Journal of Membrane Science 181.2: 279-287. (2001).
    Kotsanopoulos, et al. "Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.", Critical reviews in food science and nutrition 55.9 : 1147-1175. (2015).
    Tang, Na, et al. "Vacuum membrane distillation simulation of desalination using polypropylene hydrophobic microporous membrane." Journal of Applied Polymer Science 132.11 (2015)..
    Yang, Xing, et al. "Performance improvement of PVDF hollow fiber-based membrane distillation process." Journal of Membrane Science 369.1-2: 437-447. (2011).
    Chiam, et al. "Vacuum membrane distillation processes for aqueous solution treatment—A review." Chemical Engineering and Processing: Process Intensification 74 : 27-54. (2013).
    Allan, et al. "Dusty gas model of flow through naturally occurring porous media." Applied mathematics and computation 148.3 : 809-821. (2004).
    El-Bourawi, M. S., et al. "A framework for better understanding membrane distillation separation process." Journal of membrane science 285.1-2: 4-29. (2006).
    Song, et al. "Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination." Journal of Membrane Science 323.2: 257-270. (2008).
    Summers, et al. "Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes." Desalination 330 : 100-111. (2013).
    Lee, et al. "Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane." Journal of membrane science 478 : 85-95. (2015).
    Bahar, et al. "Channeled coolant plate: a new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit." Desalination 359 : 71-81. (2015).
    Zhao, et al. "Condensation studies in membrane evaporation and sweeping gas membrane distillation." Journal of Membrane Science 462 : 9-16. (2014).
    Abu-Zeid, et al. "A comprehensive review of vacuum membrane distillation technique." Desalination 356 : 1-14. (2015).
    Bandini, et al. "Vacuum membrane distillation: experiments and modeling." AIChE journal 43.2: 398-408. (1997).
    Zhou, et al. "Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation." Journal of membrane science 453 : 402-408. (2014).
    Camacho, et al. "Advances in membrane distillation for water desalination and purification applications." Water 5.1 : 94-196. (2013).
    Lawson, et al. "Membrane distillation." Journal of membrane Science 124.1: 1-25. (1997).
    G.C. Sarti, C. Gostoli and S. Matulli, Low energy cost desalination processes using hydrophobic membranes, Desalination, 56 277-286 (1985).
    Mullin, J., Crystallization, Butterworth, Boston, (1997).
    Matsuoka, et al. "Determination of solid} liquid equilibrium." Bunri Gijutsu (Separation Process Engineering) 16.4: 10. (1986).
    Jiang, X., et al., "Density, viscosity and thermal conductivity of electronic grade phosphoric acid", J. Chem. Eng. Data, 56 2, 205-211 (2011).
    Jiang, X., et al, "Research on melt crystallization preparation process of hyperpure of phosphoric acid" PhD thesis, Tianjin University, Tianjin, (2012).
    黃烱秦, "以鋇系化學過氧沉澱法結合流體化床均質顆粒化技術回收含硼廢水中的硼," 成功大學化學工程學系學位論文, pp. 1-110, 2016..
    P. Zhou, et al., "Heavy metal removal from wastewater in fluidized bed reactor," Water Research, vol. 33, pp. 1918-1924, (1999)..
    C. Lee and W. Yang, "Heavy metal removal from aqueous solution in sequential fluidized-bed reactors," Environmental technology, vol. 26, pp. 1345-1354, (2005)..
    詹豐隆, "含鎳廢水流體化床結晶處理技術之應用," 臺灣大學環境工程學研究所學位論文, pp. 1-82, (2004)..
    陳政澤, "流體化床結晶反應槽回收廢水中重金屬鎘之研究," 碩士學位論文, 國立中央大學, 桃園, 台灣, (1995)..
    李茂松,流體化床結晶技術在無稽廢水處理上應用性研究,in:化學學系,中原大學(1993).
    張鈞期,不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究,in:化學工程學系碩博士班,成功大學,台灣pp. 118(2009).
    C.-C. Su, C.-M. Chen, J. Anotai, M.-C. Lu, Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized-bed Fenton process, Chemical Engineering Journal, 222 (2013).
    張華強, "以流體化床反應器開發均相成核與結晶之新穎除磷技術," 成功大學化學工程學系學位論文, pp. 1-107, (2012)..
    周連智,應用流體化床結晶床處理含磷廢水之研究-以TFT-LCD廠為例,in:環境工程研究所,國立中央大學(2012).
    陳侑利,利用流體化床均質顆粒化技術以鐵鹽回收水溶液中磷酸之研究,in:化學工程研究所,國立成功大學(2014).
    J. Dirksen and T. Ring, "Fundamentals of crystallization: kinetic effects on particle size distributions and morphology," Chemical Engineering Science, vol. 46, pp. 2389-2427, (1991)..
    C. L. Chen, "Comparative Influencing Effect of Hydrodynamics on Crystallization Kinetics in Tapered Fluidized-bed Crystallizer," (2006)..
    Zaghib, K., and C. M. Julien. "Structure and electrochemistry of FePO4· 2H2O hydrate." Journal of Power Sources 142.1-2 : 279-284. (2005).
    Gongyan, et al. "Dehydration of FePO4· 2H2O for the Synthesis of LiFePO4/C: Effect of Dehydration Temperature." Int. J. Electrochem. Sci 13 : 2498-2508. (2018).
    Gadgil, M. M., and S. K. Kulshreshtha. "Study of FePO4 catalyst." Journal of Solid State Chemistry 111.2 : 357-364. (1994).

    無法下載圖示 校內:2024-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE